SIEMENS

Contents, Foreword

In just a few steps to the first project

Systemsoftware

Communications configuring

Changeover from STRUC V4.x to D7-SYS

Closed-loop thristor current control

Index

SIMADYN D

System- and communication configuring D7-SYS

Manual

Edition 12.2003

Safety guidelines	This Manual contains notices which you should observe to ensure your own personal safety, as well as to protect the product and connected equipment. These notices are highlighted in the Manual by a warning triangle and are marked as follows according to the level of danger:
	indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.
	indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.
	used with the safety alert symbol indicates a potentially hazardous situation which, if no avoided, may result in minor or moderate injury.
CAUTION	used without safety alert symbol indicates a potentially hazardous situation which, if not avoided, may result in property damage.
NOTICE	used without the safety alert symbol indicates a potential situation which, if not avoided may result in an undesireable result or state.
Correct usage	Note the following: This device and its components may only be used for the applications described in the catalog or the technical description, and only in connection with devices or components
	from other manufacturers which have been approved or recommended by Siemens.

The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

Siemens AG A&D Frauenauracher Straße 80 91056 Erlangen

We have checked the contents of this manual for agreement with the hardware and software described. Since deviations cannot be precluded entirely, we cannot guarantee full agreement. However, the data in this manual are reviewed regularly and any necessary corrections included in subsequent editions. Suggestions for improvement are welcomed.

© Siemens AG 2003 Technical data subject to change.

Editions

SIMADYN D

Manual

System- and communication configuring D7-SYS

Edition 12.2003

NOTE

Please note that the current edition of this documentation contains different editions of the individual chapters. The following overview tells you when a chapter was revised the last time.

Overview (chapter editions)

Chapter		Edition
	Foreword	Edition 12.2003
1	In just a few steps to the first project	Edition 12.2001
2	Systemsoftware	Edition 03.2001
3	Communications configuring	Edition 12.2003
4	Changeover from STRUC V4.x to D7-SYS	Edition 03.2001
5	Closed-loop thyristor current control	Edition 06.2002

Foreword

Purpose of this Manual	This Manual explains the principle use and functions of the STEP 7 automation software with the main focus on the appropriate technological and drive control components T400, FM 458-1 DP, SIMADYN D, SIMATIC TDC or D7-SYS.		
Basic knowledge required	This Manual addresses programmers and commissioning engineers. General knowhow regarding automation technology is required in orde understand the contents of the Manual		
Validity of the Manual	This Manual is valid for SIMATIC D7-SYS Version 6.1.		
Additional support	If you have questions relating to the use of the products described in the Manual, which cannot be answered here, then please contact your local Siemens office. You can also call the Hotline:		
	• Tel.: +49(9131) 98-5000		
	• Fax: +49(9131) 98-1603		
	e-mail: <u>adsupport@siemens.com</u>		
Training Center	Appropriate training courses are available in order to make it easier to get to know the SIMADYN D automation system. Please contact the central Training Center in D-Erlangen (I&S IS INA TC):		
	• Tel.: +49(9131) 7-27689, -27972		
	• Fax: +49(9131) 7-28172		
	Internet: <u>www.siemens.de/sibrain</u>		
	Intranet: http://info-tc.erlm.siemens.de/		
NOTE	This user part of the Manual does not include any detailed		

This user part of the Manual does not include any detailed information/instructions with individual descriptions, but is only intended to provide a basic procedure. More detailed information on the dialog boxes in the software and how they are handled is provided in the appropriate online help.

Title	Content
System and	The first project in a few steps
communications configuring D7-SYS	This Section provides an extremely simple entry into the methodology when assembling and programming the SIMATIC TDC/SIMADYN D control system. It is especially conceived for first-time users of a control system.
	System software
	This Section provides basic know-how about the structure of the operating system and an application program of a CPU. It should be used to obtain an overview of the programming methodology, and basis for configuring user programs.
	Communications configuring
	This section provides you with basic know-how about the communication possibilities and how you configure links to the communication partners.
	Changeover from STRUC V4.x to D7-SYS
	Essential features are included in this section, which have changed over STRUC V4.x with the introduction of SIMATIC D7-SYS.
STEP 7 option packages	Basis software
for D7-SYS	This section explains the essential use and the functions of the STEP 7 automation software. For first users, it provides an overview on configuring, programming and commissioning a station.
	When working with the basis software, you can access the online help which provides you with support when it comes to detailed questions on using the software.
	CFC
	The CFC language (Continuous Function Chart) allows you to graphically interconnect blocks.
	When working with the particular software, you can also use the online help which can answer detailed questions regarding the use of the editors/compiler.
	SFC
	Configuring sequence controls using SFC (Sequential Function Chart) of SIMATIC S7.
	In the SFC editor, you generate a sequence chart using graphic resources. The SFC elements of the chart are then positioned according to specific rules.
Hardware	The complete hardware spectrum is described as reference in this Manuals.
Function blocks	These Reference Manuals provide you with an overview of selected function blocks for the associated technological and drive control components T400, FM 458-1 DP, SIMADYN D and SIMATIC TDC.

Guide

As first time user, we recommend that this Manual is used as follows:

- Please read the first section on using the software in order to get to know some of the terminology and basic procedure.
- Then use the particular sections of the Manual if you wish to carry-out certain processing steps (e.g. loading programs).

If you have already executed a small project, and have gained some experience, then you can read individual sections of the Manual in order to get up to speed about a specific subject.

Automation and Drives, Service & Support Can be accessed globally at any time of the day:

Europe / Africa (Nuremberg)		Europe / Africa (Nuremberg)
Technie	cal Support	Authorization
Local tim	ne: MonFri. 7:00 to 17:00	Local time: MonFri. 7:00 to 17:00
Tel.:	+49 (0)180 5050-222	Tel.: +49 (0)911 895-7200
Fax:	+49 (0)9131 98-1603, +49 (0)911 895-7001 or +49 (0)180 5050-223	Fax: +49 (0)911 895-7201
E-Mail: <u>te</u>	dc.support@siemens.com	E-Mail: authorization@nbgm.siemens.de
GMT:	+1:00	GMT: +1:00
Americ	a (Johnson City)	Asia / Australia (Singapore)
Technic Authori	cal Support and ization	Technical Support and Authorization
Local tim	ne: MonFri. 8:00 to 19:00	Local time: MonFri. 8:30 to 17:30
Tel.:	+1 (0)770 740-3505 only toll-free from the US: +1 (0)800 241-4453	Tel.: +65 740-7000
Fax:	+1 (0)770 740-3699	Fax: +65 740-7001
E-Mail: <u>is</u> GMT:	sd-callcenter@sea.siemens.com -5:00	E-Mail: simatic.hotline@sae.siemens.com.sg drives.support@sae.siemens.com.sg GMT: +8:00

Contents

Fo	Foreword iii		
1	In just a	few steps to the first project	1-1
	1.1	Prerequisites	1-2
	1.1.1	Software and hardware	1-2
	1.1.2	What you can expect	1-4
	1.2	Creating a new project	1-5
	1.3	Defining the hardware	1-5
	1.4	Generating a CFC chart	
	1.4.1	Generating a new chart	1-6
	1.4.2	Inserting, parameterizing and inter-connecting function blocks	1-6
	1.5	Testing, compiling and downloading the project	1-10
	1.5.1	Checking the project consistency and compiling	1-10
	1.5.2	Downloading the user project into the SIMADYN D-CPU module	1-10
	1.6	Testing the user project	1-12
	1.6.1	Disconnecting the connection online	1-13
	1.6.2	Generating a connection online	1-13
	1.6.3	Changing the parameterization online	1-13
	1.6.4	Inserting a block online	1-13
	1.6.5	Deleting blocks online	1-13
	1.7	Results	1-14
	1.8	Archiving the project	1-14
2	Systems	software	2-1
	2.1	Configuring	2-2
	2.1.1	General description	2-2
	2.1.1.1	Configuring tools	2-2
	2.1.1.2	Configuring steps	2-3 2-3
	2.1.1.0	Configuring the bardware	2 0 2-4
	2.1.2.1	The first step: Selecting the hardware modules	
	2.1.2.2	The second step: Parameterizing the hardware modules	2-5
	2.1.2.3	The third step: Checking the configuring	2-7
	2.1.3	Creating CFC charts	
	2.1.3.1 2132	The second step: Parameterizing and interconnecting function blocks	/-2 2-8
	2.1.3.3	The third step: Compiling and loading the user program into the CPU	

0.4.4		~
2.1.4	Operating statuses of a CPU module	2-14
2.1.5	Configuring example of a CPU module	2-15
2.1.5.1	1ask	2-15
2.1.5.2	Solution	2-15
2.1.6	Description and use of the signal transfer mechanisms	2-17
2.1.6.1	Data consistency	2-17
2.1.6.2	Data transfer within the same task of a CPU	2-18
2.1.6.3	Data transfer between various CPU tasks	2-18
2.1.6.4	Data transfer between cyclic tasks of several CPUs	2-19
2.1.6.5	Data transfer between interrupt tasks of several CPUs	2-20
2.1.6.6	Minimizing the deadtimes	
2.1.0.7	Interconnection changes and limited number of interconnections	
2.1.0.0		
2.1.7	Significance and uses of the process image	2-23
2.1.7.1	Implementing the process image	2-24
2.1.7.2	Process image for cyclic tasks	2-25
2.1.7.3	Process image for interrupt tasks	2-20
2.1.8	Significance and application of the CPU synchronization	2-27
2.1.8.1	Time synchronization	2-27
2.1.8.2	Synchronizing its own basic clock cycle to the basic clock cycle of a master	
0400	CPU	2-27
2.1.8.3	Synchronizing its own basic clock cycle to an interrupt task of a master CPU.	2-28
2.1.8.4	Synchronizing its own interrupt tasks to interrupt tasks of a master GPU	2-28
2.1.0.0	Synchronizing several SimATIC TDC/SimAD the Distations	2-20
2.1.0.0	Configuring the CRU basic clerk cycle cynchronization	2-20
2.1.0.7	Configuring the interrupt teck experience synchronization	
2.1.0.0	Example of a synchronization configuration	
2.1.0.3		
2.1.9	Significance of the processor utilization	2-31
2.1.9.1	Determining the approximate processor utilization	2-31
2.1.9.2	Vade of operation of the took administrator	2-32
2.1.9.3	Fliming ting cycle errors	
2.1.9.4		
2.1.10	lechnical data of the operating system	2-34
2.1.10.1	Features	
2.1.10.2	The partice utility	2-36
2.1.10.3		2-39
2.2	Function description and user instructions	2-41
2.2.1	Fatal system error "H"	2-41
222	Background processing	2-43
2221	Online test mode	2-44
		0.45
2.3	System chart @SIMD	2-45
Commun	ications configuring	3-1
3.1	Introduction	3-2
311	Basic information on communications	3.2
3111	Overview of the various data couplings	3-2
24.0	Overview of the communication utilities	
J.I.Z		ა-ŏ
3.1.3	Communication block I/Os	3-9
3.1.3.1		3-9

3

3.1.3.2 3.1.3.3 3.1.3.4 3.1.3.5	Address connections AT, AR and US Data transfer mode, MOD input Firmware status, ECL, ECO connection Status display, output YTS	3-10 3-11 3-15 3-15
3.1.4 3.1.4.1 3.1.4.2 3.1.4.3 3.1.4.4 3.1.4.5	Mode of operation of the couplings Central coupling blocks Transmitters and receivers Compatible net data structures Number of coupling modules in a subrack Reorganizing a data interface	3-16 3-17 3-18 3-19 3-20 3-20
3.2	Couplings on the subrack	3-22
3.2.1	Local CPU coupling	3-22
3.2.2	Communications buffer coupling	3-22
3.2.3	Coupling to EP3 modules	3-23
3.3	Subrack coupling	3-25
3.3.1	Hardware structure	3-27
3.3.2	Scope of supply	3-27
3.3.3	Response when "shutting down" a coupling partner	3-27
3.3.4	Response when "powering-up" the master subrack	3-28
3.3.4.1	Acknowledging	3-28
3.3.5	Restart frequency	3-29
3.3.6	Configuring	3-30
3.4	Industrial Ethernet coupling (SINEC H1)	3-31
3.4.1	Hardware and central coupling block	3-32
3.4.1.1	Hardware	3-32
3.4.1.2		3-34
3.4.2	Communications via SINEC H1 layer 2	3-34
3.4.3	Communications via SINEC H1 layer 4	3-30
3.4.4	Address connections	3-38
3.4.4.2	Communications utility, process data	3-40
3.4.4.3	Communications utility, message system	3-42
3.4.5	System time	3-44
3.4.6	Data quantities, sampling times	3-44
3.4.7	NML network management	3-45
3.5	PROFIBUS DP coupling	3-46
3.5.1	Configuring with D7-SYS	3-47
3.5.1.1	Central coupling block	3-47
3.5.1.2	Address connections AT, AR	3-48
3.5.1.4	Configuring versions of SYNC/FREEZE	3-50
3.5.1.5	Diagnostics function block	3-54
3.5.2	Configuring with COM PROFIBUS	3-58
3.5.2.1	Harmonizing with data configured in CFC	3-58
3.5.2.2	Loading the database	3-59
3.5.3	Start-up/diagnostics	3-61
3.5.3.1	LEDs	3-61

3.5.3.2 3.5.3.3	Error class (ECL) and error code (ECO)	
3.5.3.4 3.5.3.5	Typical configuration and system requirements Check list of the required hardware and software components for	
	SIMADYN D	3-66
3.5.3.6	Configuring under STEP 7 CFC	
3.5.3.7	Using transmit- and receive blocks	
3.5.3.8	Configuring the SS52 communications module with COM PROFIBUS	3-70 3-73
35310	Generating the COM database with COM PROFIBUS	
3.5.3.11	Downloading the COM database into the SS52	
3.5.3.12	Working with the "SS52load" download tool	
3.5.3.13	Behavior of the SS52 during and after the download	
3.6	PROFIBUS FDL coupling (SINEC L2 FDL)	3-83
3.6.1	Hardware and central coupling block	3-83
3.6.1.1	Hardware for PROFIBUS FDL	
3.6.1.2	Central coupling block @CSL2L for the PROFIBUS FDL coupling	
3.0.1.3	Communications via PROFIBUS FDL	
3.6.2	Data quantities, sampling times	
3.7	PROFIBUS FMS coupling (SINEC L2-FMS)	
3.7.1	Hardware and central coupling block	
3.7.1.1	Hardware for the PROFIBUS FMS coupling	
3.7.1.2	Central coupling block @CSL2F for PROFIBUS FMS coupling	
3.7.2	Communications via PROFIBUS FMS	3-91
3.7.3	SIMADYN D communications utility	
3.7.3.1	Process data	
3.7.3.Z		
3.7.4	Address parameters EMS utilities	3-100
275	Deta quantition compling times	2 100
3.7.3		2 402
3.7.0 3.7.6.1	COMSSS	3-102
3762	Bus parameters	3-103
3.7.6.3	Communication associations	
3.7.6.4	Loading the database	3-116
3.7.7	Examples	3-118
3.7.7.1	Example 1: Process data between two SIMADYN D stations	3-118
3.7.7.2	Example 2: Process data between three SIMADYN D stations	3-122
3.8	DUST1 coupling	3-127
3.8.1	Hardware structure	3-127
3.8.2	Configuring	3-127
3.8.3	Configuring example, service to CFC	3-128
3.8.4	Configuring example, process data between SIMADYN D subracks	3-128
3.8.4.1	Subrack 1	3-128
3.8.4.2	Subrack 2	3-129
3.9	DUST2 coupling	3-131
3.9.1	Hardware structure	3-131
3.9.2	Configuring	3-131

3.10	DUST3 coupling	3-133
3.10.1	Hardware structure	3-133
3.10.2	Configuring	3-133
3.10.2.1	Data entries at inputs AT, AR	3-133
3.10.2.2	Central coupling block	3-134
3.10.2.3	Transmit/receive blocks	3-135
3.11	DUST7 coupling	3-136
3.11.1	General	3-136
3.11.2	Hardware	3-136
3.11.3	Configuring	3-136
3.12	MPI coupling	3-137
3.12.1	Characteristics and hardware	3-137
3.12.2	Configuring	3-137
3.13	USS master coupling	3-138
3.13.1	Hardware structure	3-138
3.13.2	Data transfer technique	3-141
3.13.3	Transferred net data	3-141
3.13.4	Configuring	3-141
3.13.4.1	Central coupling block @CSU	3-141
3.13.4.2	Function blocks which can be used	
3.13.4.3	l elegram types	
3.13.5	Mode of operation	3-143
3.13.6	USS master on the 1400 technology module	
3.13.0.1	Basis network for the 1400 technology module	3-144 3_1/5
3.13.6.3	Broadcast	
3.13.7	Literature	
3 14	USS slave coupling	3-146
3 14 1	Basis network for the T400 technology module	3-146
3 1/1 2		3_1/6
2 1 / 2		2 1/7
3.14.3	Transmitting	3-147
3.14.3.2	Receiving	
3.14.4	Handling and visualizing parameters	3-148
3.14.5	Special features for 4-conductor operation of the USS-slave coupling	3-148
3.14.6	USS-slave coupling via V24/RS232	3-148
3.15	Peer-to-peer coupling	3-149
3.15.1	Initialization	3-149
3.15.2	Transferring process data	3-149
3.15.2.1	Transmitting	3-149
3.15.2.2	Receiving	3-150
3.16	SIMATIC P-bus coupling	3-151
3.16.1	Overview of the 3 data transfer types, FM 458 $\leftarrow \rightarrow$ SIMATIC-CPU	3-152
3.16.2	Initiating a process interrupt on SIMATIC-CPU	3-153
3.16.3	Data transfer via I/O accesses	3-154

3.16.4	Transferring data sets	3-156
3.17	SIMOLINK drive coupling	3-160
3.17.1	Basic information	3-160
3.17.2	Application with master-slave process data transfer	3-162
3.17.3	Applications and modes which should be set	3-163
3.17.4 3.17.4.1	Configuring - first steps Configuring the SIMOLINK coupling under STEP 7	3-166 3-167
3.17.4.2	Parameterizing the MASTERDRIVES MC	3-171
3 17 5		3-174
3 17 6	Options and accessories	3-176
0.17.0		0 477
3.18	Lable function	3-177
3.18.1	Introduction	3-177
3.18.1.2	Overview, "Automatic mode: Communications"	3-178
3.18.1.3	Function block WR_TAB	3-180
3.18.2	Manual mode	3-182
3.18.2.1	Application	3-182
3.18.2.2	Configuring	3-183
3.18.3	Automatic mode: Communications	3-184
3.18.3.1	Application with an S7 control and SIMATIC FM 458 application module	3-184
3.18.3.3	Inserting tabular values in the data block	3-188
3.18.3.3.1	Manually entering tabular values	3-188
3.18.3.3.2	Importing tabular values	3-192
3.18.3.3.3	Subsequently downloading tabular values into a DB	3-202
3.10.3.4 2.40.4	Structure of the data telegram for TCP/IP of DOSTT connection	3-204
3.10.4 3.18.4.1	Generating a table file in the csv format	3-205
3.18.4.2	Working with the D7-SYS additionalComponentBuilder	3-207
3.18.4.3	Downloading	3-210
3.18.4.4	Configuring the function blocks	3-212
3.19	Parameter access technique for D7-SYS	3-214
3.19.1	General description of the parameter functionalityinformation	3-214
3.19.1.1	Parameters	3-214
3.19.1.2	Status-dependent parameter changes	3-217
3.19.1.4	Identifying SIMADYN D components	3-221
3.19.1.5	Units and unit texts	3-222
3.19.2	Parameterizing on the Application module FM 458	3-225
3.19.2.1	Terminology	3-225
3.19.2.2	Communications behavior	3-226
3.19.2.4	Functional scope	3-220
3.19.2.5	Operator devices which can be connected	3-228
3.20	Communications utility, display control	3-229
3.20.1	General description	3-229
3.20.2	Hardware	3-229
3.20.3	Software	3-230

3.20.3.1 3.20.3.2 3.20.3.3 3.20.3.4	Central block @DIS Process data acquisition blocks Acquisition blocks for binary values (only OP2) Message output blocks (only OP2)	. 3-230 . 3-231 . 3-232 . 3-233
3.20.4 3.20.4.1 3.20.4.2	Application information Computation times Data transfer times	. 3-234 . 3-235 . 3-235
3.20.5	Configuring example	. 3-236
3.21	Communications utility, message system	. 3-239
3.21.1 3.21.1.1 3.21.1.2	Entry logic of the message entry blocks Message entry blocks for an activated message Message entry blocks for an activated and a de-activated message	. 3-239 . 3-239 . 3-240
3.21.2	Configuring example for a message system	. 3-240
3.21.3 3.21.3.1	Output formats of the message evaluation block MSI Structure of an error- or alarm message	. 3-244 . 3-244
3.21.3.2	Overview of the message formats	3-244
3.21.3.3	Structure of a communications error message	. 3-240
3.21.3.5	System error message structure	.3-247
3.21.3.6	Detailed description of the message formats of function block MSI	. 3-247
3.21.3.7	Output format of the message evaluation block MSPRI	. 3-251
3.22	Communications utility parameter processing	. 3-254
3.22.1	Master configuring	. 3-254
3.22.1.1	Supported couplings	3-254
3.22.1.2	Telegram structure	. 3-255
3.22.1.4	Mode of operation of the PKW blocks	3-255
3.22.1.5	Configuring example	. 3-257
3.22.1.6	Lask/response IDs	3-260
3.22.1.7	Cascading	. 3-262
3.22.1.9	Parameter change report processing	3-263
3.22.1.10	Cyclic tasks	. 3-263
3.22.1.11	Temporary error messages from the DPI blocks	. 3-263
3.22.1.12	Important drive converter settings	. 3-264
3.23	For change tasks, the parameter change rights of the drive converter must be set at the configured interface. Network	e . 3-265
3.23.1	Terminology	. 3-265
3.23.2	Description	. 3-265
3.23.3	Rigid network	3-266
3.23.3.1	Address data in the rigid network	.3-266
3.23.3.2 3.23.3.3	Assigning the conving relationships of the NTC to NTD	3-269
3.23.3.4	Route selection and errors	. 3-269
3.23.3.5	Initialization of a rigid network	. 3-269
3.23.3.6	Channel modes	. 3-269
3.24	Communications utility process data	. 3-270
3.24.1	Receive- and transmit blocks	.3-270
3.24.1.1	Virtual connections	3-270
3.24.1.2	I/U OF THE URV, UTV BIOCKS	. 3-274

3.24.2 3.24.2.1	Channel marshalling blocks CCC4 and CDC4 Group block CCC4	.3-274
3.24.2.2	Distribution block CDC4.	.3-275
3.24.2.3	Compatible net data structure	. 3-276
3.24.3	Diagnostic outputs	. 3-276
3.24.3.1	Fault/error cause	.3-276
3.24.3.2	Channel assignment	.3-277
3.24.3.3	Channel statuses	. 3-270
3.24.4	Principle mode of operation	3-278
3.24.4.2	Applications	.3-279
3.24.4.3	Features of pointer-based communications	.3-280
3.24.4.4	Associated function blocks	. 3-281
3.24.4.5	Pointer interface	.3-281
3 24 4 7	Examples of CEC screenshots	.3-282
3 25	Communications utility service	3-288
3.25.1	Function block SER	.3-289
3.25.2	System load, response times	.3-290
3.26	Communications utility time of day synchronization	. 3-291
3.27	Communications with SIMATIC Operator Panels	. 3-292
3.27.1	Configuring example	. 3-292
3.27.2	Configuring SIMADYN D	. 3-293
3.27.2.1	Selecting the components in HWConfig	.3-293
3.27.2.2	Initializing the OP7	3-294
3.27.2.2.2	Reading function block connections (I/O)	.3-295
3.27.2.2.3	Writing function block connections	. 3-296
3.27.2.2.4	Configuring events	. 3-297
3.27.2.2.5	Configuring alarm messages	.3-298
3 27 2 2 7	Configuring the interface area	3-299
3.27.2.3	Importing the symbol table	.3-301
3.27.3	Configuring the OP7 with ProTool/Lite	.3-302
3.27.4	Application information	. 3-303
3.27.4.1	Computation times	. 3-303
3.28	Communications with WinCC (MPI)	. 3-304
3.29	Communications with WinCC (SINEC H1)	. 3-306
3.29.1	Prerequisites	.3-306
3.29.2	Process variables	. 3-307
3.29.2.1	SIMADYN D software	. 3-307
3.29.2.2	Configuring WinCC	.3-310
3.29.3	Binary events	.3-310
3.29.4	SIMADYN D messages	.3-310
3.29.4.1	SIMADYN D configuring software	.3-310
3.29.4.2 2.20 F	Concreting the address hook using the CEC editor	2 240
J.29.5		. 3-312
3.29.6	NIVIL configuring software for CSH11	.3-313

	3.29.7 3.29.7.1	Address list import tool ADRIMP Prerequisites	3-314 3-314
	3.29.7.1.1	Generating the variable definition file	
	3.29.7.1.2	Generating and importing a new signal list	3-315
	3.29.7.2	Checking the generated tag management in WinCC	
	3.29.8	Communications set-up. SIMADYN D-WinCC	
	3.29.8.1	Connecting cable	
	3.29.8.2	Activating WinCC	
	3.29.8.3	Activating SIMADYN D	
4	Changeov	rer from STRUC V4.x to D7-SYS	4-1
	4.1	Function blocks	
	4.1.1	Assigning names to function block types and connections	
	4.1.2	Control blocks	4-3
	4.1.3	Arithmetic blocks	
	4.1.4	Logic blocks	
	4.1.5	Input/output blocks	
	4.1.6	Communication blocks	
	4.1.7	Conversion blocks	
	4.1.8	Diagnostic blocks	4-14
	4.1.9	SIMOVERT D block	
	4.1.10	COROS blocks	4-15
	4.2	Adapting specific connection attributes	4-16
	4.2.1	Display utility	4-16
	4.2.2	Equipment response utility	4-17
	4.2.3	Changing the data types for function blocks	4-17
	4.3	Hardware differences	4-18
	4.4	Communications	
	4.5	Configuring	4-21
	4.5.1	Configuring tools	4-21
	4.5.2	Object-oriented handling of the configuring tools	
	4.5.3	Installation and de-installation	
	4.6	Configuring, step by step	
	4.6.1	Administering the project data	4-25
	4.6.2	Configuring the hardware	4-25
	4.6.3	Configuring the open-loop/closed-loop control	4-27
	4.6.4	Compiling and loading the user program	4-30
	4.6.5	Test and start-up	4-31
	4.7	V4.x terminology which is replaced by D7-SYS terminology	4-33
5	Closed-loo	op thyristor current control	
	5.1	Overview	
	5.1.1	Hardware configuration	5-3

5.1.2	Software configuration	5-4
5.2	Function description	5-6
5.2.1 5.2.1.1	PA6, synchronization Offset angle	5-6 5-8
5.2.1.2	Synchronization and pulse generation	5-9
5.2.2	EMF, voltage - actual value sensing	5-15
5.2.3 5.2.3.1	SOL, switch-over logic Fault evaluation and protection	5-19 5-25
5.2.4	CAV, current actual value sensing	5-30
5.2.5	CSP, current setpoint calculation	5-34
5.2.6	CPC, current pre-control	5-36
5.2.7	CPI, current controller	5-38
5.2.8	PC6, firing angle controller	5-42
5.2.9	FCS, field current setpoint output	5-47
5.3	Commissioning	5-51
5.3.1	Preparatory work	5-51
5.3.2	Entering the characteristic system quantities	5-52
5.3.3	Current sensing calibration	5-55
5.3.4	Voltage sensing calibration	5-56
5.3.5	Determining the offset angle	5-56
5.3.6	Determining the armature time constant TA	5-57
5.3.7	Optimizing the current controller	5-59
5.3.8	Field supply	5-61
5.4	Special features/issues	
5.4.1	Operation from 60 [Hz] line supplies	5-63
5.4.2	Operation with unstable line supplies	5-63
5.4.3	Communications utility, time synchronization	5-64
5.5	Interfaces to the power electronics	5-65
5.5.1	SITOR set	5-65
5.5.2	SITOR cabinet	5-67
5.6	Definitions	5-74
5.6.1	Formats	5-74
5.6.2	Designations	5-75
5.7	Abbreviations	5-76
5.8	Appendix	5-77
5.8.1	Standard configuration of parameters	5-77
5.8.2	Standard connections	5-81
5.8.3	Configuring example for normalization	5-82
5.8.3.1	Representation with normalized values	5-82
5.8.3.2	Representation with absolute values	5-83
Index		I-1

Contents

Fo	preword		iii
1	In just a	few steps to the first project	1-1
	1.1	Prerequisites	1-2
	1.1.1	Software and hardware	1-2
	1.1.2	What you can expect	1-4
	1.2	Creating a new project	1-5
	1.3	Defining the hardware	1-5
	1.4	Generating a CFC chart	1-6
	1.4.1	Generating a new chart	1-6
	1.4.2	Inserting, parameterizing and inter-connecting function blocks	1-6
	1.5	Testing, compiling and downloading the project	1-10
	1.5.1	Checking the project consistency and compiling	1-10
	1.5.2	Downloading the user project into the SIMADYN D-CPU module	1-10
	1.6	Testing the user project	1-12
	1.6.1	Disconnecting the connection online	1-13
	1.6.2	Generating a connection online	1-13
	1.6.3	Changing the parameterization online	1-13
	1.6.4	Inserting a block online	1-13
	1.6.5	Deleting blocks online	1-13
	1.7	Results	1-14
	1.8	Archiving the project	1-14
2	Systems	software	2-1
	2.1	Configuring	2-2
	2.1.1	General description	2-2
	2.1.1.1	Configuring tools	2-2
	2.1.1.2	Configuring steps	2-3 2-3
	2.1.1.0	Configuring the bardware	2 0 2-4
	2.1.2.1	The first step: Selecting the hardware modules	
	2.1.2.2	The second step: Parameterizing the hardware modules	2-5
	2.1.2.3	The third step: Checking the configuring	2-7
	2.1.3	Creating CFC charts	
	2.1.3.1 2132	The second step: Parameterizing and interconnecting function blocks	/-2 2-8
	2.1.3.3	The third step: Compiling and loading the user program into the CPU	

0.4.4		~
2.1.4	Operating statuses of a CPU module	2-14
2.1.5	Configuring example of a CPU module	2-15
2.1.5.1	1ask	2-15
2.1.5.2	Solution	2-15
2.1.6	Description and use of the signal transfer mechanisms	2-17
2.1.6.1	Data consistency	2-17
2.1.6.2	Data transfer within the same task of a CPU	2-18
2.1.6.3	Data transfer between various CPU tasks	2-18
2.1.6.4	Data transfer between cyclic tasks of several CPUs	2-19
2.1.6.5	Data transfer between interrupt tasks of several CPUs	2-20
2.1.6.6	Minimizing the deadtimes	
2.1.0.7	Interconnection changes and limited number of interconnections	
2.1.0.0		
2.1.7	Significance and uses of the process image	2-23
2.1.7.1	Implementing the process image	2-24
2.1.7.2	Process image for cyclic tasks	2-25
2.1.7.3	Process image for interrupt tasks	2-20
2.1.8	Significance and application of the CPU synchronization	2-27
2.1.8.1	Time synchronization	2-27
2.1.8.2	Synchronizing its own basic clock cycle to the basic clock cycle of a master	
0400	CPU	2-27
2.1.8.3	Synchronizing its own basic clock cycle to an interrupt task of a master CPU.	2-28
2.1.8.4	Synchronizing its own interrupt tasks to interrupt tasks of a master GPU	2-28
2.1.0.0	Synchronizing several SimATIC TDC/SimAD the Distations	2-20
2.1.0.0	Configuring the CRU basic clerk cycle cynchronization	2-20
2.1.0.7	Configuring the interrupt teck experience synchronization	
2.1.0.0	Example of a synchronization configuration	
2.1.0.3		
2.1.9	Significance of the processor utilization	2-31
2.1.9.1	Determining the approximate processor utilization	2-31
2.1.9.2	Vade of operation of the took administrator	2-32
2.1.9.3	Fliming ting cycle errors	
2.1.9.4		
2.1.10	lechnical data of the operating system	2-34
2.1.10.1	Features	
2.1.10.2	The partice utility	2-36
2.1.10.3		2-39
2.2	Function description and user instructions	2-41
2.2.1	Fatal system error "H"	2-41
222	Background processing	2-43
2221	Online test mode	2-44
		0.45
2.3	System chart @SIMD	2-45
Commun	ications configuring	3-1
3.1	Introduction	3-2
311	Basic information on communications	3.2
3111	Overview of the various data couplings	3-2
24.0	Overview of the communication utilities	
J.I.Z		ა-ŏ
3.1.3	Communication block I/Os	3-9
3.1.3.1		3-9

3

3.1.3.2 3.1.3.3 3.1.3.4 3.1.3.5	Address connections AT, AR and US Data transfer mode, MOD input Firmware status, ECL, ECO connection Status display, output YTS	3-10 3-11 3-15 3-15
3.1.4 3.1.4.1 3.1.4.2 3.1.4.3 3.1.4.4 3.1.4.5	Mode of operation of the couplings Central coupling blocks Transmitters and receivers Compatible net data structures Number of coupling modules in a subrack Reorganizing a data interface	3-16 3-17 3-18 3-19 3-20 3-20
3.2	Couplings on the subrack	3-22
3.2.1	Local CPU coupling	3-22
3.2.2	Communications buffer coupling	3-22
3.2.3	Coupling to EP3 modules	3-23
3.3	Subrack coupling	3-25
3.3.1	Hardware structure	3-27
3.3.2	Scope of supply	3-27
3.3.3	Response when "shutting down" a coupling partner	3-27
3.3.4	Response when "powering-up" the master subrack	3-28
3.3.4.1	Acknowledging	3-28
3.3.5	Restart frequency	3-29
3.3.6	Configuring	3-30
3.4	Industrial Ethernet coupling (SINEC H1)	3-31
3.4.1	Hardware and central coupling block	3-32
3.4.1.1	Hardware	3-32
3.4.1.2		3-34
3.4.2	Communications via SINEC H1 layer 2	3-34
3.4.3	Communications via SINEC H1 layer 4	3-30
3.4.4	Address connections	3-38
3.4.4.2	Communications utility, process data	3-40
3.4.4.3	Communications utility, message system	3-42
3.4.5	System time	3-44
3.4.6	Data quantities, sampling times	3-44
3.4.7	NML network management	3-45
3.5	PROFIBUS DP coupling	3-46
3.5.1	Configuring with D7-SYS	3-47
3.5.1.1	Central coupling block	3-47
3.5.1.2	Address connections AT, AR	3-48
3.5.1.4	Configuring versions of SYNC/FREEZE	3-50
3.5.1.5	Diagnostics function block	3-54
3.5.2	Configuring with COM PROFIBUS	3-58
3.5.2.1	Harmonizing with data configured in CFC	3-58
3.5.2.2	Loading the database	3-59
3.5.3	Start-up/diagnostics	3-61
3.5.3.1	LEDs	3-61

3.5.3.2 3.5.3.3	Error class (ECL) and error code (ECO)	
3.5.3.4 3.5.3.5	Typical configuration and system requirements Check list of the required hardware and software components for	
	SIMADYN D	3-66
3.5.3.6	Configuring under STEP 7 CFC	
3.5.3.7	Using transmit- and receive blocks	
3.5.3.8	Configuring the SS52 communications module with COM PROFIBILS	3-70 3-73
35310	Generating the COM database with COM PROFIBUS	
3.5.3.11	Downloading the COM database into the SS52	
3.5.3.12	Working with the "SS52load" download tool	
3.5.3.13	Behavior of the SS52 during and after the download	
3.6	PROFIBUS FDL coupling (SINEC L2 FDL)	3-83
3.6.1	Hardware and central coupling block	3-83
3.6.1.1	Hardware for PROFIBUS FDL	
3.6.1.2	Central coupling block @CSL2L for the PROFIBUS FDL coupling	
3.0.1.3	Communications via PROFIBUS FDL	
3.6.2	Data quantities, sampling times	
3.7	PROFIBUS FMS coupling (SINEC L2-FMS)	
3.7.1	Hardware and central coupling block	
3.7.1.1	Hardware for the PROFIBUS FMS coupling	
3.7.1.2	Central coupling block @CSL2F for PROFIBUS FMS coupling	
3.7.2	Communications via PROFIBUS FMS	3-91
3.7.3	SIMADYN D communications utility	
3.7.3.1	Process data	
3.7.3.Z		
3.7.4	Address parameters EMS utilities	3-100
275	Deta quantition compling times	2 100
3.7.3		2 402
3.7.0 3.7.6.1	COMSSS	3-102
3762	Bus parameters	3-103
3.7.6.3	Communication associations	
3.7.6.4	Loading the database	3-116
3.7.7	Examples	3-118
3.7.7.1	Example 1: Process data between two SIMADYN D stations	3-118
3.7.7.2	Example 2: Process data between three SIMADYN D stations	3-122
3.8	DUST1 coupling	3-127
3.8.1	Hardware structure	3-127
3.8.2	Configuring	3-127
3.8.3	Configuring example, service to CFC	3-128
3.8.4	Configuring example, process data between SIMADYN D subracks	3-128
3.8.4.1	Subrack 1	3-128
3.8.4.2	Subrack 2	3-129
3.9	DUST2 coupling	3-131
3.9.1	Hardware structure	3-131
3.9.2	Configuring	3-131

3.10	DUST3 coupling	3-133
3.10.1	Hardware structure	3-133
3.10.2	Configuring	3-133
3.10.2.1	Data entries at inputs AT, AR	3-133
3.10.2.2	Central coupling block	3-134
3.10.2.3	Transmit/receive blocks	3-135
3.11	DUST7 coupling	3-136
3.11.1	General	3-136
3.11.2	Hardware	3-136
3.11.3	Configuring	3-136
3.12	MPI coupling	3-137
3.12.1	Characteristics and hardware	3-137
3.12.2	Configuring	3-137
3.13	USS master coupling	3-138
3.13.1	Hardware structure	3-138
3.13.2	Data transfer technique	3-141
3.13.3	Transferred net data	3-141
3.13.4	Configuring	3-141
3.13.4.1	Central coupling block @CSU	3-141
3.13.4.2	Function blocks which can be used	
3.13.4.3	l elegram types	
3.13.5	Mode of operation	3-143
3.13.6	USS master on the 1400 technology module	
3.13.0.1	Basis network for the 1400 technology module	3-144 3_1/5
3.13.6.3	Broadcast	
3.13.7	Literature	
3 14	USS slave coupling	3-146
3 14 1	Basis network for the T400 technology module	3-146
3 1/1 2		3_1/6
2 1 / 2		2 1/7
3.14.3	Transmitting	3-147
3.14.3.2	Receiving	
3.14.4	Handling and visualizing parameters	3-148
3.14.5	Special features for 4-conductor operation of the USS-slave coupling	3-148
3.14.6	USS-slave coupling via V24/RS232	3-148
3.15	Peer-to-peer coupling	3-149
3.15.1	Initialization	3-149
3.15.2	Transferring process data	3-149
3.15.2.1	Transmitting	3-149
3.15.2.2	Receiving	3-150
3.16	SIMATIC P-bus coupling	3-151
3.16.1	Overview of the 3 data transfer types, FM 458 $\leftarrow \rightarrow$ SIMATIC-CPU	3-152
3.16.2	Initiating a process interrupt on SIMATIC-CPU	3-153
3.16.3	Data transfer via I/O accesses	3-154

3.16.4	Transferring data sets	3-156
3.17	SIMOLINK drive coupling	3-160
3.17.1	Basic information	3-160
3.17.2	Application with master-slave process data transfer	3-162
3.17.3	Applications and modes which should be set	3-163
3.17.4 3.17.4.1	Configuring - first steps Configuring the SIMOLINK coupling under STEP 7	3-166 3-167
3.17.4.2	Parameterizing the MASTERDRIVES MC	3-171
3 17 5		3-174
3 17 6	Options and accessories	3-176
0.17.0		0 477
3.18	Lable function	3-177
3.18.1	Introduction	3-177
3.18.1.2	Overview, "Automatic mode: Communications"	3-178
3.18.1.3	Function block WR_TAB	3-180
3.18.2	Manual mode	3-182
3.18.2.1	Application	3-182
3.18.2.2	Configuring	3-183
3.18.3	Automatic mode: Communications	3-184
3.18.3.1	Application with an S7 control and SIMATIC FM 458 application module	3-184
3.18.3.3	Inserting tabular values in the data block	3-188
3.18.3.3.1	Manually entering tabular values	3-188
3.18.3.3.2	Importing tabular values	3-192
3.18.3.3.3	Subsequently downloading tabular values into a DB	3-202
J. 10.J.4	Structure of the data telegram for TCP/IP of DOSTT connection	3-204
3.10.4 3.18.4.1	Generating a table file in the csv format	3-205
3.18.4.2	Working with the D7-SYS additionalComponentBuilder	3-207
3.18.4.3	Downloading	3-210
3.18.4.4	Configuring the function blocks	3-212
3.19	Parameter access technique for D7-SYS	3-214
3.19.1	General description of the parameter functionalityinformation	3-214
3.19.1.1	Parameters	3-214
3.19.1.2	Status-dependent parameter changes	3-217
3.19.1.4	Identifying SIMADYN D components	3-221
3.19.1.5	Units and unit texts	3-222
3.19.2	Parameterizing on the Application module FM 458	3-225
3.19.2.1	Terminology	3-225
3.19.2.2	Communications behavior	3-226
3.19.2.4	Functional scope	3-220
3.19.2.5	Operator devices which can be connected	3-228
3.20	Communications utility, display control	3-229
3.20.1	General description	3-229
3.20.2	Hardware	3-229
3.20.3	Software	3-230

3.20.3.1 3.20.3.2 3.20.3.3 3.20.3.4	Central block @DIS Process data acquisition blocks Acquisition blocks for binary values (only OP2) Message output blocks (only OP2)	. 3-230 . 3-231 . 3-232 . 3-233
3.20.4 3.20.4.1 3.20.4.2	Application information Computation times Data transfer times	. 3-234 . 3-235 . 3-235
3.20.5	Configuring example	. 3-236
3.21	Communications utility, message system	. 3-239
3.21.1 3.21.1.1 3.21.1.2	Entry logic of the message entry blocks Message entry blocks for an activated message Message entry blocks for an activated and a de-activated message	. 3-239 . 3-239 . 3-240
3.21.2	Configuring example for a message system	. 3-240
3.21.3 3.21.3.1	Output formats of the message evaluation block MSI Structure of an error- or alarm message	. 3-244 . 3-244
3.21.3.2	Overview of the message formats	3-244
3.21.3.3	Structure of a communications error message	. 3-240
3.21.3.5	System error message structure	.3-247
3.21.3.6	Detailed description of the message formats of function block MSI	. 3-247
3.21.3.7	Output format of the message evaluation block MSPRI	. 3-251
3.22	Communications utility parameter processing	. 3-254
3.22.1	Master configuring	. 3-254
3.22.1.1	Supported couplings	3-254
3.22.1.2	Telegram structure	. 3-255
3.22.1.4	Mode of operation of the PKW blocks	3-255
3.22.1.5	Configuring example	. 3-257
3.22.1.6	Lask/response IDs	3-260
3.22.1.7	Cascading	. 3-262
3.22.1.9	Parameter change report processing	3-263
3.22.1.10	Cyclic tasks	. 3-263
3.22.1.11	Temporary error messages from the DPI blocks	. 3-263
3.22.1.12	Important drive converter settings	. 3-264
3.23	For change tasks, the parameter change rights of the drive converter must be set at the configured interface. Network	e . 3-265
3.23.1	Terminology	. 3-265
3.23.2	Description	. 3-265
3.23.3	Rigid network	3-266
3.23.3.1	Address data in the rigid network	.3-266
3.23.3.2 3.23.3.3	Assigning the conving relationships of the NTC to NTD	3-269
3.23.3.4	Route selection and errors	. 3-269
3.23.3.5	Initialization of a rigid network	. 3-269
3.23.3.6	Channel modes	. 3-269
3.24	Communications utility process data	. 3-270
3.24.1	Receive- and transmit blocks	.3-270
3.24.1.1	Virtual connections	3-270
3.24.1.2	I/U OF THE URV, UTV BIOCKS	. 3-274

3.24.2 3.24.2.1	Channel marshalling blocks CCC4 and CDC4 Group block CCC4	.3-274
3.24.2.2	Distribution block CDC4.	.3-275
3.24.2.3	Compatible net data structure	. 3-276
3.24.3	Diagnostic outputs	. 3-276
3.24.3.1	Fault/error cause	.3-276
3.24.3.2	Channel assignment	.3-277
3.24.3.3	Channel statuses	. 3-270
3.24.4	Principle mode of operation	3-278
3.24.4.2	Applications	.3-279
3.24.4.3	Features of pointer-based communications	.3-280
3.24.4.4	Associated function blocks	. 3-281
3.24.4.5	Pointer interface	.3-281
3 24 4 7	Examples of CEC screenshots	.3-282
3 25	Communications utility service	3-288
3.25.1	Function block SER	.3-289
3.25.2	System load, response times	.3-290
3.26	Communications utility time of day synchronization	. 3-291
3.27	Communications with SIMATIC Operator Panels	. 3-292
3.27.1	Configuring example	. 3-292
3.27.2	Configuring SIMADYN D	. 3-293
3.27.2.1	Selecting the components in HWConfig	.3-293
3.27.2.2	Initializing the OP7	3-294
3.27.2.2.2	Reading function block connections (I/O)	.3-295
3.27.2.2.3	Writing function block connections	. 3-296
3.27.2.2.4	Configuring events	. 3-297
3.27.2.2.5	Configuring alarm messages	.3-298
3 27 2 2 7	Configuring the interface area	3-299
3.27.2.3	Importing the symbol table	.3-301
3.27.3	Configuring the OP7 with ProTool/Lite	.3-302
3.27.4	Application information	. 3-303
3.27.4.1	Computation times	. 3-303
3.28	Communications with WinCC (MPI)	. 3-304
3.29	Communications with WinCC (SINEC H1)	. 3-306
3.29.1	Prerequisites	.3-306
3.29.2	Process variables	.3-307
3.29.2.1	SIMADYN D software	. 3-307
3.29.2.2	Configuring WinCC	.3-310
3.29.3	Binary events	.3-310
3.29.4	SIMADYN D messages	.3-310
3.29.4.1	SIMADYN D configuring software	.3-310
3.29.4.2 2.20 F	Concreting the address hook using the CEC editor	2 240
J.29.5		. 3-312
3.29.6	NIVIL configuring software for CSH11	.3-313

	3.29.7 3.29.7.1	Address list import tool ADRIMP Prerequisites	3-314 3-314
	3.29.7.1.1	Generating the variable definition file	
	3.29.7.1.2	Generating and importing a new signal list	3-315
	3.29.7.2	Checking the generated tag management in WinCC	
	3.29.8	Communications set-up. SIMADYN D-WinCC	
	3.29.8.1	Connecting cable	
	3.29.8.2	Activating WinCC	
	3.29.8.3	Activating SIMADYN D	
4	Changeov	rer from STRUC V4.x to D7-SYS	4-1
	4.1	Function blocks	
	4.1.1	Assigning names to function block types and connections	
	4.1.2	Control blocks	4-3
	4.1.3	Arithmetic blocks	
	4.1.4	Logic blocks	
	4.1.5	Input/output blocks	
	4.1.6	Communication blocks	
	4.1.7	Conversion blocks	
	4.1.8	Diagnostic blocks	4-14
	4.1.9	SIMOVERT D block	
	4.1.10	COROS blocks	4-15
	4.2	Adapting specific connection attributes	4-16
	4.2.1	Display utility	4-16
	4.2.2	Equipment response utility	4-17
	4.2.3	Changing the data types for function blocks	4-17
	4.3	Hardware differences	4-18
	4.4	Communications	
	4.5	Configuring	4-21
	4.5.1	Configuring tools	4-21
	4.5.2	Object-oriented handling of the configuring tools	
	4.5.3	Installation and de-installation	4-22
	4.6	Configuring, step by step	
	4.6.1	Administering the project data	4-25
	4.6.2	Configuring the hardware	4-25
	4.6.3	Configuring the open-loop/closed-loop control	4-27
	4.6.4	Compiling and loading the user program	4-30
	4.6.5	Test and start-up	4-31
	4.7	V4.x terminology which is replaced by D7-SYS terminology	4-33
5	Closed-loo	op thyristor current control	
	5.1	Overview	
	5.1.1	Hardware configuration	5-3

5.1.2	Software configuration	5-4
5.2	Function description	5-6
5.2.1 5.2.1.1	PA6, synchronization Offset angle	5-6 5-8
5.2.1.2	Synchronization and pulse generation	5-9
5.2.2	EMF, voltage - actual value sensing	5-15
5.2.3 5.2.3.1	SOL, switch-over logic Fault evaluation and protection	5-19 5-25
5.2.4	CAV, current actual value sensing	5-30
5.2.5	CSP, current setpoint calculation	5-34
5.2.6	CPC, current pre-control	5-36
5.2.7	CPI, current controller	5-38
5.2.8	PC6, firing angle controller	5-42
5.2.9	FCS, field current setpoint output	5-47
5.3	Commissioning	5-51
5.3.1	Preparatory work	5-51
5.3.2	Entering the characteristic system quantities	5-52
5.3.3	Current sensing calibration	5-55
5.3.4	Voltage sensing calibration	5-56
5.3.5	Determining the offset angle	5-56
5.3.6	Determining the armature time constant TA	5-57
5.3.7	Optimizing the current controller	5-59
5.3.8	Field supply	5-61
5.4	Special features/issues	
5.4.1	Operation from 60 [Hz] line supplies	5-63
5.4.2	Operation with unstable line supplies	5-63
5.4.3	Communications utility, time synchronization	5-64
5.5	Interfaces to the power electronics	5-65
5.5.1	SITOR set	5-65
5.5.2	SITOR cabinet	5-67
5.6	Definitions	5-74
5.6.1	Formats	5-74
5.6.2	Designations	5-75
5.7	Abbreviations	5-76
5.8	Appendix	5-77
5.8.1	Standard configuration of parameters	5-77
5.8.2	Standard connections	5-81
5.8.3	Configuring example for normalization	5-82
5.8.3.1	Representation with normalized values	5-82
5.8.3.2	Representation with absolute values	5-83
Index		I-1

1 In just a few steps to the first project

Section overview

1.1	Prerequisites	1-2
1.2	Creating a new project	1-5
1.3	Defining the hardware	1-5
1.4	Generating a CFC chart	1-6
1.5	Testing, compiling and downloading the project	1-10
1.6	Testing the user project	1-12
1.7	Results	1-14
1.8	Archiving the project	1-14

1.1 Prerequisites

Introduction These brief instructions are intended for introductory level personnel and it outlines the basic procedure when generating a project.

More detailed information about the dialog boxes of the development software and their processing is provided in the corresponding online help.

1.1.1 Software and hardware

Software Three software packages

- STEP 7
- CFC
- D7-SYS

must be installed precisely in this sequence on your PG/PC with Windows 95/98/ME/NT 4.0/2000. Authorization is required for STEP7 and CFC.

NOTE The installation and user instructions are provided in the particular "readme" files. Please observe the interdependencies between versions!

When installing STEP7, you will be prompted for the online interface, however, for SIMADYN D nothing has to be selected and installed. ("Close" window and exit the following window with "OK".)

Hardware You will require the following hardware components for the "My First Project" project example:

Components	Function	Diagram/Order No.
SR6 subrack with power supply 6 slots, backplane PC board with	if the subrack is for a SIMADYN D station.	
	accommodate the modules and supply them with power.	
		6DD1682-0BB0
CPU module PM5 (at slot 1)	executes the user program. exchanges data with other modules via the backplane PC board of the subrack. communicates with a PG/PC	
	via the serial interface.	6DD1600-0AJ0

		· · · · · · · · · · · · · · · · · · ·
MS5 program memory module (for PM5) PC card standard, 2 Mbyte flash memory and 8 Kbyte EEPROM	saves the operating system, the user program and the online changes.	50D1610-0AH0
PC cable SC 57	connects the CPU module to the PG/PC.	
Zero-modern cable		by by
		6DD1684-0FH0
Expansion module IT41 (at slot 2)	expands the CPU module by technology-specific functions. It is	
16 digital inputs and outputs,	especially fast, as it is directly screwed to the CPU module and	
4 incremental encoder inputs.	the backplane bus is not used.	
		ି 6DD1606-3AC0
Interface cable SC 54	connects the inputs/outputs of	
Length: 2 m	SBxx or SU12 interface modules.	
		6DD1684-0FE0
Interface module SB10	allows you to test the user	
2 x 8 screw terminals, LED displays	and in operation, as the statuses	
	of the digital outputs are displayed using LEDs.	a name
		6DD1681-0AE2

Fig. 1-1 Module list for the project example "My First Project"

NOTE

It is also possible to use other hardware platforms (T400, FM 458) by appropriately taking this into account in the configuring. Technical data is provided in the SIMADYN D Hardware Manual, additional ordering information in Catalog DA99.

1.1.2 What you can expect

From the task to
the first projectThe example "My First Project" guides you step-by-step to a project
which can actually run.

1. Analyze the particular task

This allows you to identify the function blocks, inputs and outputs which you require and which hardware:

2. Define the hardware

You will use this hardware information in STEP7 in order to enter the modules and define your particular properties.

- 3. **Configure and compile** You generate the configured software in CFC using the function blocks and compile this. You can configure the hardware after all of the checks have been made.
- 4. **Test the configuring software** You can now run the program, tested online and change it on the SIMADYN D modules.

5. Archive the project

You can subsequently apply this procedure for you own applications.

The task The task comprises two sections:

1. A **sawtooth generator** with a fixed frequency, outputs its value via a D/A converter.

2. Running Lights with 8 channels.

To start off with, define the individual functions for the appropriate subtasks and define the necessary hardware:

1. Sawtooth generator

A sawtooth waveform is generated by an integrator, which resets itself after an upper limit has been exceeded. The integrator value is output via an analog output.

2. Running light

Eight comparators compare the sawtooth value with constant values. The results are output through digital outputs and control the LEDs on the interface module.

The running light has the following phases:

- All of the LEDs are dark.
- The LEDs are switched bright and then dark again so that only one is bright at any one time.

1.2 Creating a new project

Step	Procedure	Result
1	Double-click on the symbol S . (if the STEP 7 Assistant starts, cancel this.)	The SIMATIC Manager is opened.
2	Select File > New.	
	Enter "My First Project " into the dialog box, Project.	
	In the dialog box, select the path "LW:\Siemens\Step7\S7proj ".	
	Click on OK .	Your new project is displayed.
3	Select Insert > Station > SIMADYN D station.	The " SIMADYN D station " hardware object is inserted.

1.3 Defining the hardware

The SIMADYN D subrack structure is entered in STE	P 7
(HW Config).	

Step	Procedure	Result
4	Select the hardware object "SIMADYN D station" and select Edit > Open object.	HW Config is called-up.
5	Open it, if required, the hardware catalog with View > Catalog .	The hardware catalog with all of the available family of modules is opened.
6	Select the SR6 from the SIMADYN D family of modules and Catalog Subracks and drag it to the (upper) window	The subrack is displayed with six slots.
7	Locate them one after the other	
	>CPU Modules >PM5 at slot 1	
	>Expansion Modules >IT41 at slot 2	
	>Slot covers >SR81 at slots 3 to 6	
		The subrack is equipped.
8	Open the properties dialog box of the PM5 CPU module with Edit > Object properties.	The PM5 dialog box with general module information and the setting registers for addresses, basic clock cycle, cyclic tasks and interrupt tasks are displayed.
9	Select the basic sampling time T0 (in this case: 1 ms) under the basic clock cycle tab.	
	Click on the cyclic tasks tab and set the sampling time T1 to 2 ms and T2 to 4 ms.	The required sampling times are entered.
	Click on OK .	The properties dialog box is closed.

10	Open the properties dialog box of module IT41 using Edit > Object properties .	The IT41 dialog box with general module information and the setting tab for addresses is displayed.
11	Under the Addresses tab, click on the Pre- assign button. Click on OK .	All of the addresses are assigned symbolic names for subsequent use in CFC charts.
12	Check your hardware with Station > Check consistency.	If fault/error-free, continue with Step 13, otherwise check the hardware configuration.
13	Compile your hardware configuration with Station > Save and compile .	The hardware has been fully configured.

1.4 Generating a CFC chart

1.4.1 Generating a new chart

Step	Procedure	Result
14	Change into the SIMATIC Manager and open the project tree up to the Charts object. Select the charts by clicking on them.	My First Project E:\Siemens\Step7\S7
15	Generate a new CFC chart twice with Insert > S7 software > CFC .	The CFC 1 and CFC 2 charts are displayed as new objects at the righthand side of the project window.
16	Select chart CFC2 in the project window and open the properties dialog box with Edit > Object properties . Enter the "sawtooth generator" name. Click on OK .	You obtain the properties dialog box of the CNC chart.
47		
17	name it "Running lights".	under their new name.

1.4.2 Inserting, parameterizing and inter-connecting function blocks

Step	Procedure	Result
18	Select the "sawtooth generator" chart and open the "CFC Editor with Edit > Open object .	The CFC Editor is opened with the working area (>1 sheet) and the block catalog. (Catalog missing? Select View > Catalog) (>1 Sheet? Select View > Sheet view)
19	Open the family of blocks Closed-loop control and drag the function block INT (integrator) to the working area.	The block is now located on the sheet and has the ID for running in cyclic task T1.
20	Open the properties dialog box of function block INT with Edit > Object properties .	The INT dialog box with general block information and the setting tab I/O appears.

21	Under the General tab, change the name to "sawtooth".	
22	Under the I/O tab, enter the values for the block inputs, e.g. • $X = 1$ • $LU = 11250$ • $TI = 5 \text{ ms}$ Click on OK .	The Properties dialog box is closed and the function block inputs now have values
23	First click on output QU and then on input S.	The output QU (upper limit) is now coupled back to input S (set).
24	Select DAC (analog output) from the block family ON/OFF and locate it next to function block INT. Open the dialog box using Edit > Object properties and change the name to "analog output". Enter, for example under the I/O tab: • DM = 0 • OFF= 0 • SF = 1E6	
	Click on OK . Select connection AD (hardware address), and call-up the dialog box to interconnect the object with Insert > Connect to operand . Then mark the selection window. Select the first entry and click on OK	The block inputs are parameterized. The hardware address of the first analog output channel is assigned.
25	In the "sawtooth" block, click on output Y and after this on input X in the "analog output" block.	The sawtooth generator is connected to the analog output.

All changes made in the CFC chart are immediately saved.

Proceed the same for the second sub-task (running lights) (from step 18). Change into the SIMATIC Manager, open the CFC chart "running lights" insert the function blocks into the CFC chart, parameterize and connect them.

All of the necessary information (number of blocks, types and block parameters) can be taken from the following diagrams. Arrange the first function block and all others, via

Edit > Run sequence in cyclic task T2. The connection between the "sawtooth" block and the comparators is realized by changing the CFC window (**Window > ...**).

Fig. 1-3 "Running lights" chart
1.5 Testing, compiling and downloading the project

1.5.1 Checking the project consistency and compiling

Step	Procedure	Result
26	Start the consistency check of your project with Chart > Check consistency > Charts as program, then OK.	The result is displayed in the dialog window.
	Acknowledge the dialog window or evaluate the error messages via Details .	
27	Start to compile the project after a successful consistency check with Chart > Compile > Charts as program , then OK .	The result is displayed in a dialog window.
	Acknowledge the dialog window or evaluate the error messages using Details .	You have created your first user project.

1.5.2 Downloading the user project into the SIMADYN D-CPU module

Introduction SIMADYN D allows you to

- download online or
- offline.

Downloading offline Maybe you do not have a connection from your PC/PG to the SIMADYN D station, which is why you can use the possibility of downloading into a memory module.

Step	Procedure	Result
28	Select Target system > Download.	You will obtain a dialog window with options.
29	Select "User program" and "Offline"	
	Insert the memory module into the PCMCIA slot of the PG/PC.	A progress display shows how the system and your user program are being downloaded into the memory module.
	Start to download with OK .	
30	Insert the memory module into the SIMADYN D station and re-start it.	Your user program is then started.

Downloading online

You have established a connection from your PC/PG to SIMADYN D station, and you can download the program memory module into the CPU module.

Step	Procedure	Result
28	Check whether your SIMADYN D station (hardware) is correctly configured, assembled and connected.	Observe the configuration instructions and connection possibilities for the individual hardware components in the appropriate hardware documentation!
29	Insert the memory module into the CPU module and start the SIMADYN D station.	A flashing zero appears on the CPU module display
30	Install the interface between the SIMADYN D station and the PC in the SIMATIC Manager using the menu command: Options > Set PG/PC interface	You obtain a dialog window "Install/uninstall interfaces" in which the various interfaces are listed.
31	In the dialog window, select "DUST1 protocol" and install this protocol with Install->	You obtain a dialog window in which you can decide, by entering either "Yes" or "No" whether you wish to immediately go online.
	dialog window.	The "Set PG interface dialog window" is
	Select the interface used and acknowledge with " OK ".	displayed where you can select the access route "DUST1 (COM1)" or "DUST1 (COM2)".
32	Select the Target system > Download.	You obtain the dialog window with options.
33	Select the "System and user program", "Online (COM1)" and initialization when first downloading the user program.	A progress display shows how the system and your user program are being downloaded into the memory module.
	Note: If a user program is downloaded again, you can also specify "User program" without "initialization".	If download has been completed, the dialog window "Operating status" is displayed with the "STOP" status and a 1 is displayed on
	Start with "download"	the CPU module.
34	Start the SIMADYN D station with "Restart" and then select "Close".	Your user program is started and the "Operating status" dialog window is
	Note: If you use an SR6 subrack, then you must manually initiate a restart using a "RESET" at the subrack.	displayed with the "RUN" status.

1.6 Testing the user project

Introduction

In the test mode, you can

- Monitor the values of block I/O and change the values of block inputs,
- Generate and delete connections, and
- Insert and delete blocks.

The values which are registered for test, have a yellow background. You can easily monitor the behavior by changing parameters at the block inputs.

Before you start the test, please check whether the following prerequisites are fulfilled:

- You have established a connection between the PG/PC and your SIMADYN D station.
- You have downloaded the actual project into the memory module, which is located in the CPU module.
- The associated CFC chart (e.g. "running lights") has been opened.

Step	Procedure	Result
35	Select the menu command: Target system > Compare , to display the "Compare" dialog field.	The CPU name with data and time of the last compilation between the actual configured software and the current CPU program are displayed. If they match, the result is: "The configuring and the CPU program match".
		You have checked that the PG/PC and the SIMADYN D station can communicate.
36	Select the menu command: Test > Test settings Enter the refresh period for the screen	In the test mode, the values of the I/O are updated cyclically on the screen with the selected refresh period.
	display in tenths of seconds. Acknowledge the change with "OK".	If the computation time is not sufficient to fulfill the refresh periods, then you will be warned. The closed-loop control always has the higher priority
37	Before you go into the test mode, change over the test mode from "Process operation" to "laboratory operation" with Test > Laboratory operation .	This means that all of the block I/O are automatically switched-in for "monitoring" (the values have a yellow background).
	Note: In "Process operation", the default setting is that no I/O are registered for monitoring. In this test mode, you must select the appropriate blocks and explicitly log them-on for monitoring.	
38	Select the menu command: Test > Test mode	The "Test: RUN (laboratory)" text appears with a green background in the status bar.
		In the test mode, you can monitor and change the dynamic behavior (online).

1.6.1 Disconnecting the connection online

Procedure	In the CFC chart, using the mouse pointing device, select the block I/O which you wish to disconnect. Then remove this with Edit > Delete .
Result	The connecting line between the I/O disappears and at the I/O, the last value, which was transferred on the connection, is displayed as parameter value.
NOTE	Connections to global operands can neither be generated online nor deleted.

1.6.2 Generating a connection online

Procedure	In the CFC chart, using the mouse pointing device, select the block I/O where you wish to establish a connection. With the changeover key pressed, now select the block I/O to which this connection should be made.
Result	The connecting line between the selected I/O is generated, and the actual parameter value, which is presently being transferred, is displayed at the output.

1.6.3 Changing the parameterization online

Procedure Select the block input whose parameter value is to be changed, by double-clicking. The dialog box "Properties I/O" is displayed in which you can change the value.

Result You can immediately identify the effect of the change in the CFC Chart

1.6.4 Inserting a block online

 Procedure
 Using the command View > Catalog, call-up the block catalog. Open the block family and drag the selected function block to the working area.

NOTE Not all of the function blocks can be inserted online. Refer under "configuring data" in the online help for the block.

1.6.5 Deleting blocks online

Procedure Select the function block and remove it using the command Edit > Delete.

1.7 Results

You have now got to know some of the simple handling operations in the CFC configuring. You now know how a project is created using the SIMATIC Manager, how a CFC Chart is generated and function blocks inserted from a library. You have interconnected and parameterized the function blocks. You have generated a program which can run and which has been downloaded into the CPU. You can observe and modify the dynamic behavior in the test mode

You can now review the results for the project example "My First Project" in **process operation** if you have assembled and connected-up the necessary hardware of the SIMADYN D station (refer to Table 1-1, Section 1.1.2).

Sawtooth In order to view the sawtooth, you must first connect an oscilloscope to the SIMADYN D station. The following table shows the assignment of the pins at output connector X6 of expansion module IT41. The output voltage range extends from -10 V to +10 V.

Pin	Function	Output
15	Analog output 1	Sawtooth
48	Ground	

Table 1-1Excerpt from the pin assignment of IT41, connector X6

Running light You can observe the running light function at the LED display of interface module SB10.

1.8 Archiving the project

Step	Procedure	Result
44	In the SIMATIC Manager, select File > Archive.	The "archiving" dialog field is displayed.
45	In the dialog field "Archiving", select the user project with "My First Project".	The "archiving - select archive dialog field" is displayed.
	Click on OK .	The default file "My_first.zip" has already been entered with archiving path.
46	In the dialog field "archiving - select archive", when required, change the file name and/or the path and then click on "save"	The project is now saved in the selected path and filenames as zip file.

NOTE

When you select menu bar **File > De-archive**, the archived project can always be re-established with this particular release.

2 Systemsoftware

Overview

2.1	Configuring	2-2
2.2	Function description and user instructions	2-41
2.3	System chart @SIMD	2-45

2.1 Configuring

2.1.1 General description

This Chapter provides instructions and support when configuring SIMADYN D. It explains the general requirements when configuring SIMADYN D hardware and software.

It is assumed that the reader is knowledgeable about Windows 95/98/NT, handling the SIMATIC Manager, HWConfig and the CFC Editor; they will not be explained in this document. The configuring instructions are illustrated using diagrams and graphics. These illustrations are intended to highlight specific features, and do not necessarily precisely illustrate the CFC window. This Manual does not discuss the hardware (e. g. CPUs, memory modules, cables etc.), even if hardware designations are used in the configuring examples; if hardware information is required, then please consult the "Hardware" User Manual.

This Manual is sub-divided into the following Chapters:

- General description
- Configuring the hardware
- Creating CFC charts
- Operating statuses of a CPU module
- Configuring example for a CPU module
- Using signal transfer mechanisms
- Significance and uses of the process image
- Significance and uses of the CPU synchronization
- Significance of processor utilization

To implement most of the applications, the information in Chapter "General description" up to the Chapter "Creating CFC charts" is sufficient. More detailed information regarding special system characteristics of SIMATIC TDC/SIMADYN D is described in the following Chapters.

2.1.1.1 Configuring tools

In practice, a configuring engineer can select the required hardware modules from a module spectrum and achieve the desired technological functions by generating function diagrams and block diagrams. SIMATIC TDC/SIMADYN D supports these activities using *HWConfig* (configuring tool to define the hardware configuration of SIMATIC TDC/SIMADYN D stations) and *CFC* (block technology using numerous standard function blocks).

2.1.1.2 Configuring steps

SIMATIC TDC/SIMADYN D is configured in the following sequence

- 1. The hardware configuration is generated, and
- 2. The CFC charts are created.

2.1.1.3 Terminology and libraries

Assigning a name When configuring SIMATIC TDC/SIMADYN D, the names to be assigned must be as follows:

- Station names
 - max. 24 characters
- Modules
 - maximum length, 6 characters.

Sequence	Characters permitted	Example
First character	Alpha- and special characters	A-Z, @
Second character	Alphanumeric characters and special characters	A-Z, 0-9 , _ , or @ if the first character is @
Additional characters	Alphanumeric characters and special characters	A-Z, 0-9 , _

Table 2-1Nomenclature when assigning names to modules

- · Chart- and function block names
 - when both names are connected, the total number of characters may not exceed 24.

Name	Max. length	Permitted characters	Characters which are not permitted
Chart	22		*, _, ?, <, >,
Function block	16		"

Table 2-2 Nomenclature when assigning names to charts and function blocks

- Comments
 - for modules, maximum of 255 characters
 - for charts, maximum 255 characters
 - for function blocks and parameters, max. 80 characters

- Connections (I/O) with special functions have the following suffixes:
 - the dollar symbol "\$" (connecting signals between CPUs),
 - the star symbol "*" (symbolic hardware addresses),
 - or the exclamation mark "!" (virtual addressing).

HWConfig or CFC automatically enter these suffixes. A function block name may only appear once on a CPU. The name syntax and rules are checked when entered.

Libraries Hardware modules and function block types are saved in libraries. The required function blocks can be called-up from the libraries using HWConfig or the CFC editor.

Several function block libraries can be used for each CPU. The "FBSLIB" standard function block library is pre-assigned. It has over 200 function blocks, whose functionality is sufficient for most applications. When required, additional supplementary libraries can be imported for the particular CPU. The libraries can be found in the directory "step7\s7cfc\sdblocks\std (SIMADYN D) or ...\tdc (SIMATIC TDC)".

2.1.2 Configuring the hardware

ConfiguringHWConfig is used to configure the hardware of SIMATIC TDC/SIMADYNSIMADYN DD stations. A SIMATIC TDC/SIMADYN D station consists of a rack with
up to 20/8 CPUs and other hardware modules. When required, several
stations can be coupled with one another. The modules to be configured
can be selected from the modules in the HWConfig hardware catalog.
Racks, CPUs, I/O modules, coupling modules etc. can be selected.

HWConfig defines the system hardware configuration as result of

- the rack used together with the defined bus structure (bus termination, Daisy Chain),
- the configured hardware modules inserted in the rack as well as
- defining hardware-relevant information such as tasks, synchronization etc.

2.1.2.1 The first step: Selecting the hardware modules

Hardware	Description
Subracks	Various types depending on the slot number, bus configuration, cooling etc.
I/O modules	Peripheral modules to input/output process signals (analog-binary I/O, speed sensing signals etc.)
Expansion modules	Peripheral modules to input/output process signals. They are used to achieve higher data rates by bypassing the backplane bus, and are directly connected to a CPU module.

The following modules are available in the HWConfig hardware catalog:

Short overview of the hardware

Hardware	Description
Communication modules	Modules to provide communication utilities
Communication buffer modules	Modules to transfer data between several CPUs
CPU modules	Modules on which the configured open-loop or closed-loop control program is executed. A maximum of two expansion modules can be inserted next to a CPU.
Special modules	Modules with special functions.
Slot covers	Slot covers cover empty slots against dirt accumulation and as EMC measure
Sub-modules	A sub-module is inserted in or on a module, e. g. a memory module for a CPU or an interface module for a communications module
Technology components	Subracks as well as modules for drive converters

Table 2-3 Hardware components

Further information

Refer to the "SIMATIC TDC/SIMADYN D hardware" Manual for the individual modules which can be selected.

Using HWConfig, a module is configured, possibly with a sub-module for every subrack slot. This provides a precise image of the rack as it is in reality while the hardware is being configured. When selected, each module is given a name (recommended) which can be changed in accordance with the syntax for names. Slot covers must be provided for those slots which remain empty.

2.1.2.2 The second step: Parameterizing the hardware modules

After they have been selected, the modules must be parameterized using HWConfig. The following must be set

- · the sampling times of the cyclic tasks,
- synchronizing cyclic or interrupt-control tasks of several CPUs of a station,
- · the process interrupts and comments

Various parameterizing dialog windows are provided in HWConfig for this purpose.

Parameterizing
dialogs in
HWConfigThe pre-settings of the modules can still be changed in the module dialog
windows. For instance, the parameterizing dialog for CPU modules
includes the "Cyclic tasks" information. This allows the sampling times of
5 cyclic tasks to be changed.

Designation schematic

At least one rack and all of the modules and sub-modules which it accommodates must be configured in HWConfig. When a module is generated, a recommended module name is assigned. This recommended name can be overwritten as long as it conforms to the maximum name length (max. 6 characters) and the character exists (refer to the Chapter "General description"), with (A-Z,0-9,_,@). It is recommended that the names are selected according to the schematic in the following table for the plant/system components:

Hardware	Logical name	Designator	Significance
Subrack	An00	n	Subrack number, starting at 1
CPU	Dxy_Pn	xy n	Slot number CPU number
Sub-module	Dxyj	xy j	Slot number Sub-module number
Communication buffer module	DxyA	ху	xy = slot number
Rack coupling	DxyB	ху	xy = slot number
Serial couplings	Dxy_C	ху	xy = slot number
Other modules	Dxy	ху	xy = slot number

 Table 2-4
 Designation schematic for the hardware configuration in HWConfig

Slot number definition	The slot number of a module specifies the number of the slot in the subrack where the actual module is configured. For a SR24 with 24 slots, these are slots 1 to 24.		
	All sub-modules of a module are consecutively numbered starting from 1. The sub-module which is located at the top of the table is number 1.		
	The recommended CPU rack name is 6 characters long. The logical processor number (in the rack, from left to right) is displayed in operation, independently of the assigned name on the 7-segment display of the CPU module.		
NOTE	The configured module names within a station must be unique.		
The various tasks of a SIMADYN D CPU	 The configured function blocks are processed via 5 cyclic tasks and/or 8 interrupt tasks. 		
	The start of an interrupt task with respect to the instant that the process interrupt was initiated can be offset by a freely-configurable delay time.		

SIMADYN D system chart The system chart, in which the behavior/characteristics of the 7-segment display, acknowledge button etc. is configured, is administered in a newly created SIMATIC TDC/SIMADYN D program, and may not be deleted. The sampling time of the system chart is pre-assigned in the factory at approx. 128 ms.

2.1.2.3 The third step: Checking the configuring

When the hardware configuration has been completed, the configured data must be verified using a consistency check over the complete station. The complete hardware configuration is checked using HWConfig. If the software has bugs or is incomplete, these are displayed and can be "debugged" (refer to the Chapter "Configuring example of a CPU module").

2.1.3 Creating CFC charts

Description of the CFC editor A CFC chart (Continuous Function Chart) is generated using the CFC editor. This is a configuring tool to describe continuous processes by graphically interconnecting complex functions in the form of individual function blocks. Thus, the CFC is used to graphically implement a technological application by interconnecting and parameterizing function blocks. For a configuring engineer this means that he can program using a system which is closely related to block diagrams.

CFC chart structure A CFC comprises of several CFC charts, each with 6 sheets. Each sheet can have a different number of various function blocks. The actual number is only limited by the graphic layout. In the overview of the CFC editor, all 6 sheets of a chart are displayed, and in the sheet view, an individual sheet can be displayed in detail. The function blocks which can be called-up in the CFC editor are sub-divided into function block classes, which include the interconnected (associated) functional scope. For instance, this can include logic blocks, arithmetic blocks etc.. Each function block class in turn includes a number of various function block types.

The CFC editor defines the technological configuring by:

- selecting, interconnecting and parameterizing the configured function blocks,
- defining of the sequence characteristics of the function blocks,
- generating programs to program the CPU memory modules.

2.1.3.1 The first step: Selecting the function blocks

The various function block classes are available in the FBSLIB standard library. The individual function blocks can be called-up using the CFC editor, and located on the chart sheets. Individual blocks or block groups can be subsequently deleted, shifted and copied at any time.

Additional information

For further information on the function blocks refer to the Reference Manual "SIMADYN D function block library".

2.1.3.2 The second step: Parameterizing and interconnecting function blocks

After the function blocks have been selected, these are interconnected and parameterized using the CFC editor. The task, in which the individual function blocks are computed, must also be defined.

Parameterizing dialogs in the CFC editor

By double clicking on the function block header or under the menu selection **Edit > Object characteristics**, the following data can be configured deviating from the pre-settings:

Data	Description	
General	The name and a comment text which is displayed in the function block header can be configured. Under "special object properties" you can execute the steps which are necessary to prepare a <u>block</u> for operator control and monitoring using WinCC.	
Run-time properties	Here, the execution sequence of a function block, defined under function block insert, can be changed within a task. The selected function block can be "searched for", "cut-out" in the execution sequence, and "inserted" in another position.	
I/O	The following I/O data can be entered here for all parameters:	
	value and comment for input and output parameters	
	 visibility in the CFC chart for parameters which are not interconnected 	
	set or inhibit parameter ID for test	
	 scaling value for parameters, REAL data type 	
	texts for the various units	

Table 2-5Configuring function blocks

Additional information

Refer to the Manual "TEP7 Optionspakete für D7-SYS, Section CFC".

Defining the run- time properties	Function blocks which are consecutively executed within a task can be combined to form a run-time group. In addition to structuring the task, this allows task execution to be individually enabled/disabled.		
NOTE	If a run-time group, is disabled via a function block input which is connected to it, then all of the function blocks contained in it are no longer computed.		

	By assigning the function blocks to a cyclic or interrupt-controlled task or run-time group and defining the position within the task or run-time group the configuring engineer can define the run-time properties of the function blocks. These properties are decisive for the characteristics of the target system as far as
	deadtimes,
	response times,
	the stability of time-dependent structures.
Assigning the function blocks to cyclic tasks	The function blocks are assigned to one of the 5 possible cyclic tasks by calling-up the block using the CFC editor or in the program section, execution sequence of the CFC editor. Each function block can therefore be assigned to a cyclic task and a processing sequence within the sampling time of the task.
Assignment of the function blocks to interrupt task	In order to process function blocks and run-time groups, interrupt- controlled, when they are called-up, or in the execution sequence of the CFC editor, they are entered in the required sequence under one of the 8 possible process interrupts. Thus, individual function blocks or a run-time group can be executed, initiated by a specific process interrupt.
NOTE	Contrary to cyclic tasks, interrupt tasks are not started in equidistant time intervals, but when a process interrupt occurs.
Configuring the equivalent sampling time	Several function blocks, e. g. some control blocks, have to be processed at regular interval as result of the program design. If these are to be configured in an interrupt task, then an equivalent sampling time must be configured in the HWConfig program section for this particular interrupt task. This should approximately correspond to the average time between two process interrupts.
	By clicking twice on the module, you can configure the equivalent sampling time under the menu item Basic clock > Synchronization .

Fig. 2-1 Function block processing by the operating system

Executing the function blocks

The actual open-loop and closed-loop control task can be implemented using SIMATIC TDC/SIMADYN D, almost the same as in a block diagram, by interconnecting and parameterizing the function blocks. A function block type can be used as often as required. The function blocks are parameterized and interconnected at the block inputs and outputs.

Fig. 2-2 CFC chart sheet- work area

For general parameterization of the function blocks and interconnections between the function blocks, there are

- inputs (function block inputs) and
- outputs (function block outputs).
- Inputs The configuring engineer can parameterize the inputs with constants or connect them to other function block outputs. When the function blocks are called-up, the inputs and outputs are pre-assigned, but these can be changed.
- Outputs The outputs can be connected to other inputs or assigned an initialization value which is different than the pre-assigned value. This value is available at this output if the function block is executed for the first time in the INIT operating status. This is practical, if the output of a flipflop block is to be pre-assigned.
- **Margins** The margins at the left and right of a CFC chart include, on one hand, the references to the objects to be interconnected, e. g. other blocks or runtime groups, which are not located on that sheet. On the other hand, they also include the number of the connector (termination location), if the autorouter cannot draw the connecting line to the margin as the sheet is overfilled.
- **Overflow sheets** Overflow sheets are automatically created, if more margin entries are generated on a sheet than there is space to display them. An overflow sheet consists exclusively of the margins and does not contain any objects.

Parameterization	Instead of an interconnection, a constant, deviating from the pre-assig constant, can be parameterized at each input or output.		
	A block connection can be designated as parameter using a pseudocomment. Additional information on parameterizing, refer to the Manual "System and Communications Configuring D7-SYS, Section "Parameterizing SIMATIC TDC/SIMADYN D"		
Interconnecting	Interconnecting involves the following:		
	 connecting a function block output to another function block input on the same CPU. 		
	 connecting a function block output to a run-time group 		
	 connecting a function block output to a global operand or a global operand with a function block input. A global operand can be: 		
	 a name with a "\$" dollar symbol as suffix, i. e. connecting a signal from or to a function block on another CPU. 		
	 a virtual connection name or a virtual connection, i. e. transferring process data between function blocks or via any links using the process data utility. 		
	 a symbolic hardware address. A hardware address is in this case a symbolic designation of one or several associated terminals of a module. For example, binary inputs of a binary input module. The symbolic hardware address is defined in the HWConfig program section. 		
	- a name reference, i.e. the name of a message system		
	All types of interconnections which leave a chart sheet, generate an appropriate cross reference at the margin of the CFC chart.		
Comments:	Each function block I/O on the CFC chart can be provided with a comment text.		
Pseudo comments	There are three pseudo comments, which are identified by the @ character as suffix and can be separated by blanks in front of the standard comment text:		
	1. @DATX		
	 The input is connected, bypassing the consistency mechanisms (refer to the Chapter "Description and use of the signal transfer mechanisms"). 		
	2. @TP_bnnn		
	 A connection identified like this can also be addressed as parameter. (The parameter can be read and changed at the block inputs using operating control devices and can only be read at the block outputs: 		

- The I/O, defined as parameters, can be read and changed via these interfaces; and also via drive converter operator control panels or SIMOVIS. The following variables are used:
- b: range identification "H", "L", "c" or "d"
 - identifies the parameter number range
 - "H" or "L": connections can be read and changed
 - "c" or "d": connections can only be read
- nnn: three-digit parameter number
 - 000 to 999
- 1. @TC_nnnn:
- A technology connector @TC_nnnn at a block output can be interconnected with a parameter at a block input using BICO technology. A technology connector is identified using ist number:
- nnnn: four-digit technology connector number
 - 0000 to 9999

Additional information

on parameters and technology connectors, refer to Manual "SIMADYN D Control System, Communications Configuring D7-SYS", Section Parameterizing SIMADYN D.

2.1.3.3 The third step: Compiling and loading the user program into the CPU

After all of the required hardware modules have been configured with HWConfig and the required function blocks on the individual charts using the CFC editor, the software can be compiled into the CPU machine code using the compiler. There are 2 ways to do this:

Offline loading A memory module is programmed with the PCMCIA interface of the configuring PC. After all of the correctly programmed memory modules of all of the subrack CPUs have been inserted, the modules are ready.

Online loading The user program and operating system are directly loaded from the configuring PC into the CPU via a serial communications link.

2.1.4 Operating statuses of a CPU module

Operating status	Power off	INIT	RUN	STOP		
Internal system status				User stop	Initialization error	System error
Status description	No-voltage condition	System run-up (initialization)	Cyclic operation (standard operation)	Stop initiated by the user	Status after initialization error	Status after fatal system error
Characteristic s/properties	System not operational	System run-up > external control not possible	Functionality in accordance with that configured	No cyclic processing - > fast download	Initialization erroneous > no transition into cyclic operation	Fatal system error -> processing aborted
7-segment display	Dark	'0'	PN number ('1' '8') and 'C', 'E', 'b', 'A'	'd' (flashing when downloading)	'0' (the cause flashes)	'H' (the cause flashes)
Red LED on T400	Dark	Off	Flashes at a low frequency	Flashes at a medium frequency	Flashes at a high frequency	Lit (bright)
Available diagnostic interfaces		None	All of those con must be at the SS) and local ir	figured (one first CS7- iterface	Local interface and first CS7 interface	Local interface
Possible operator control functions		None	Complete functionality of CFC online	Only diagnostics or download	Only diagnostics or download	Only diagnostics or download
Administered through the user interface (CFC)			The user can in	terrogate the s	statuses per inte	eractive dialog

In the SIMATIC TDC/SIMADYN D system, the system statuses, shown in the following table are possible:

Table 2-6System statuses of a CPU module

Terminology:

First CS7-SS Interface module (SS4 or SS52) which is inserted	
the top in the first CS7 in the subrack (when count from the left).	at ting
Diagnostics Only possible to read-out error fields	

Table 2-7 Terminology

INIT, RUN and STOP are the operating statuses, whereby STOP is subdivided into three different system statuses.

- System status user stop The "User stop" system status has been newly implemented and is used to quickly load a program via SS52/MPI, SS4/DUST1 (SIMADYN D), CP50M0 (SIMATIC TDC) or a local interface. Fast program loading means that cyclic processing is stopped in this status and the full performance of the CPU is available for download. A 'd' is displayed in the 7-segment display which starts to flash when a program is being loaded. This status is initiated by the user, whereby the parameterization as far as the configured diagnostics interface is concerned still remains valid (SS4, SS5x interface module in the CS7 module, CP50M0).
- **Download in the RUN status** It is also possible to download a program in the RUN status using each utility however this does not involve significantly longer download times (data is loaded in parallel with the cyclic processing).

It is only possible to changeover into the "User stop" status out of the RUN status by the user explicitly requesting this via a service interface (local or configured). In this status, all configured service interfaces and the local service interface are still available, i. e. diagnostics and downloading are still possible via all of the service interfaces (this is necessary if several PCs are connected at the rack).

2.1.5 Configuring example of a CPU module

The procedure when generating a new project with the "HWConfig" and "CFC" configuring tools in the SIMATIC Manager under Windows 95/98/NT is now explained in this Chapter using a real example.

Additional information

on generating a project, refer to the Manual "STEP7 Optionspakete für D7-SYS, Basis Software for D7-SYS" and "CFC for SIMADYN D, Continuous Function Chart".

2.1.5.1 Task

This is a basic configuring example involving a SIMADYN D-CPU PM5 with MS5 memory module in a SR6 subrack. 2 function blocks (e. g. an integrator and a conversion block) are to be configured in the first chart of this CPU. The software is then to be compiled and the CPU memory module programmed.

2.1.5.2 Solution

SIMATIC Manager Open the "SIMATIC Manager" under Windows 95/NT by double clicking on the **SIMATIC Manager** symbol.

Create a new project with the menu bar and the "**File** > **New** > **Project**" function, with the name "Project name".

Insert a SIMADYN D station using the menu item "Insert > Station > SIMADYN D station".

	The "SIMADYN D station" directory, available below the "Project name" can now be selected after the project tree (project hierarchy) has been displayed. The HWConfig program is now started by clicking twice on the hardware symbol in the righthand side of the window.
HWConfig	Call-up the hardware catalog in the HWConfig window via the menu bar Insert > Hardware components .
	For this project example, the subrack folder must be selected from the SIMADYN D directory. Select the required SR6 subrack by double clicking on it or per drag & drop, whereby the selected subrack must be dragged, with the mouse key held, into the HWConfig window of the SIMADYN D station.
	Proceed in the same way for the required PM5 CPU module. It is located in slot 1 in the subrack displayed.
	The MS51 program memory module, automatically integrated in slot 1.1 in PM5 by HWConfig is now be removed. This is done by marking it and removing it using the menu bar Edit > Delete . The MS5 program memory module is now inserted, via the hardware catalog, into the directory SIMADYN D > Sub-module > Program memory > MS5 per drag & drop or clicking twice with the mouse.
Parameterizing the hardware	The hardware can be parameterized differently than that pre-assigned by double clicking on the CPU or on the memory module in the subrack.
	Before HWConfig is terminated, the entered hardware configuration is checked via the menu bar Station > Check consistency . HWConfig can then be closed via Station > Save and Station > Terminate .
SIMATIC Manager	Now select the "Charts" directory, located under "Project name" after displaying the complete project tree and select the menu item " Insert > S7 software > CFC ".
	Start the "CFC editor" program section by double clicking on the CFC symbol in the righthand section of the window.
CFC editor	Create the function block catalog from the menu bar using View > Catalog .
	Drag the standard library FBSLIB on to a chart sheet of the CFC window from the catalog. For example the function block types INT and R_I from the control blocks and conversion blocks type classes.
	By double clicking on the function block inputs/outputs or the function block header, the pre-assignments can be changed in the CFC window under View > Sheet view ".
Creating interconnections	If the data format is the same, interconnections are created by a single click on the output followed by a click on the required input.
NOTE	The sheet view can be increased (zoomed) using View > Zoom on the menu bar.

The assignment of the function blocks to the cyclic tasks and the interrupt tasks can be changed using the **Edit** > **Sequence** menu item.

When configuring has been completed, the generated software can be checked with the **Chart** > **Check consistency** menu item, and then compiled into the machine code with **Chart** > **Compile**.

The **Target system** > **Load** menu item then allows the memory module to be programmed.

2.1.6 Description and use of the signal transfer mechanisms

Signal transfer is data exchange between various blocks.

Fig. 2-3 Data transfer between two tasks

2.1.6.1 Data consistency

For interconnections between different cyclic tasks, SIMATIC TDC/SIMADYN D ensures the consistency of all data which is transferred. This means, that all data transferred from a task come from the same computation cycle of this task. All values calculated during a sampling cycle are "exported" at the end of the task. When starting a task, the required values are "imported", whereby it is ensured that there is no overlap (from a time perspective) between reading and writing the values (buffer system). As deadtimes are unavoidable with this concept, a signal should not be routed via several tasks and CPUs - if this can be avoided.

A differentiation is made between the following signal transfer types :

- Data transfer within the same task of a CPU
- Data transfer between various tasks of a CPU
- Data transfer between cyclic tasks of several CPUs
- · Data transfer between alarm tasks of several CPUs

2.1.6.2 Data transfer within the same task of a CPU

Each function block output in the system is assigned a memory location. The function block saves its computed value in this memory location after being processed. All inputs, which are connected with the outputs in the same task, retrieve their values from the memory locations assigned to the connected output. In order to prevent deadtimes, the blocks of a task should if possible be computed corresponding to the "signal flow", i. e. that block whose outputs are used as inputs for the following block is first computed etc.

2.1.6.3 Data transfer between various CPU tasks

Data transfer between various tasks of a CPU is realized via a buffer system so that the data consistency can be guaranteed (refer to the Chapter "Data consistency"). However, for data transfer from a faster to a slower task, it should be observed that value changes are not sensed in the slow task or are only sensed with a delay. If this cannot be tolerated, then the software must be appropriately adapted, e. g. using pulseextending function blocks.

Fig. 2-4 Signal not sensed in task 3

Fig. 2-5 Signal sensed with delay

2.1.6.4 Data transfer between cyclic tasks of several CPUs

Signals are transferred between the CPUs using the MM3, MM4 and MM11 (SIMADYN D) or CP50M0 (SIMATIC TDC) communication buffer modules. \$ signals are used to handle the connections between function blocks, which run on different CPUs within the same SIMADYN D station (menu item "Insert-connection to the operand " in the CFC editor). The following data are required to configure a \$ signal:

- the signal name,
- type
- · bus assignment.

The dollar signal type defines whether data transfer is to be

- consistent ("standard") or
- inconsistent ("fast \$ signal")

For a fast \$ signal, the user (destination) can always access a current value. The deadtime, generated during signal transfer is then minimal if the generator (source) and user (destination) are configured in the same task, and if the tasks are possibly synchronized (refer to Chapter "Significance and application of the CPU synchronization").

The bus assignment defines whether data is to be transferred via the L bus or the C bus.

- **NOTE** If time-critical functions are processed on the CPUs of a subrack, then please observe the following rules:
 - Limit the number of \$ signals to a minimum.
 - Select the L bus for the \$ signals, which are configured in interrupt tasks (alarm tasks).
 - Select the C bus for the \$ signals, which are not configured in interrupt tasks (alarm tasks).
 - If possible, configure all of the communication links of the rack coupling to one or a maximum of two CPUs of the subrack.
 - Configure the CPUs with the configured communication links of the rack coupling so that, if possible, there are no additional CPUs between these CPUs and the rack coupling module.

2.1.6.5 Data transfer between interrupt tasks of several CPUs

Fast \$ signalA fast \$ signal must always be configured if the signal is generated or
used in an interrupt task. This is the because an interrupt event can occur
at any instant in time and therefore the consistency mechanisms must be
bypassed in order to prevent data loss. In this case, a conflict could occur
between the demand for data consistency and low deadtimes. A decision
must now be made depending on the particular application.

NOTE It should always be checked as to whether problems could occur if there is no data consistency (data consistency mechanism bypassed).

The data consistency can be achieved by looping the signals through a cyclic task on the CPU module which is used to calculate the interrupt task. The deadtime computation is illustrated in the following table.

Time interval	Computation
Minimum value	1 * Tx
Maximum value	2 * Tx + 1 * Ty + 1 * T_interrupt

Table 2-8Deadtime computation

- Tx = sampling time of the cyclic tasks through which the signals are looped,
- Ty = sampling time of the source/destination (target) CPU and
- T_alarm = maximum interrupt repeat time of the interrupt task.

2.1.6.6 Minimizing the deadtimes

To minimize the deadtimes, a signal can be directly transferred, bypassing the data consistency mechanism. It can be directly "connected" to the output of the generating block. They are two ways to configure this:

- Pseudo comment @DATX for interconnecting tasks of a CPU
- Fast \$ signals for interconnecting several CPUs

2.1.6.7 Processing sequence within a basic CPU clock cycle

The task administrator (refer to the Chapter "Mode of operation of the task administrator") of the operating system is started with the basic CPU clock cycle T0. This then decides which tasks are to be started (T1 and maximum of one other Tn,

with Tn from {T2...T5}.

Essentially, the following components are to be executed within the task processing:

- Buffer changeover for the tasks to be started (T1 and, if required an additional task Tn)
- System mode of the blocks in T1 corresponding to the module sequence (refer to the Chapter "Significance and uses of the process image")
- System mode of blocks in Tn corresponding to the block sequence (refer to the Chapter "Significance and uses of the process image");
- Importing signal interconnections in the T1 and standard mode T1
- Exporting signal interconnections from T1
- Importing signal interconnections in Tn and standard mode Tn
- Exporting signal interconnections from Tn

The components relevant for signal transfer are highlighted.

2.1.6.8 Interconnection changes and limited number of interconnections

Interconnection changes during the configuring test phase Interconnections extending beyond the task limits can only be changed with some restrictions using the test mode of the CFC editor. The CFC editor test mode is used to test and optimize the user program, which is already running online on the CPU.

	When service makes changes such as these, there are only a limite number of reserves for additional interconnections. The number of additional interconnections is			
	• minimum of 10 ad	ditional interconnections	s, and	
	• maximum of 20 % interconnections.	of the already configure	ed number of	
Example:	There are already 5 interconnections from cyclic task T2 to cyclic task T3. For interconnection changes from T2 to T3 there is then a reserve of 10 interconnection changes, as 20 % of $5 = 1$, however a minimum of 10.			
	For 100 existing inter interconnections, as	connections, there are a 20 % of 100 = 20.	an additional 20 reserve	
Limited number of interconnections	A differentiation is made between interconnections within a task, between tasks of a CPU and between several CPUs of a station. For operation with several CPUs, an additional differentiation is made between standard- and fast \$ signals.			
	For interconnections between tasks of a CPU, the alternating buffer system on the processor is used. The maximum number of interconnections is limited by the main memory expansion stage.			
	Connections between several CPUs of a station are handled via the communication buffer modules. The number of possible interconnecti is dependent on the communication buffer module used and the signatypes. Further information on the communication buffer modules refer to the "SIMATIC TDC/SIMADYN D hardware" Manual			
	For an MM11 module with 64 Kbyte memory each for the L- and C bus, the following are obtained when using:			
	Signal type	Bytes/interconnection	Number of interconnections	
	Fast \$ signals	4	Approx. 16000 per bus type	
	Standard signal	Max. 36 (No. CPUs + 1)* 4)	Min. 1800 per bus type	
	Table 2-9 Calculating	g the maximum number of inte	erconnections	

NOTE If standard and fast interconnections are combined, an appropriately lower number are obtained.

2.1.7 Significance and uses of the process image

	A process image is an instantaneous image of all interface signals from the process at the start of a cyclic task.			
Necessity for data consistency	For a digital control system, the interface signals must be processed consistently to the individual processes. In this case, interface signals are the digital and analog input- or output signals of a hardware module.			
	The input signals of the various tasks must be kept constant during a computation cycle. If this was not the case, interface signal changes while processing a task and run times of the individual function blocks would unpredictably influence the result of a computation cycle.			
	The data from the hardware interfaces is processed in the so-called process image, implemented by the system mode of the function blocks when a task is started to be processed.			
	The task administrator (refer to the Chapter "Mode of operation of the task administrator") of the operating system is started with the basic CPU clock cycle T0. This decides which tasks are to be started (T1 and a maximum of additional Tn,			
	with Tn &{T2T5}.			
Task processing	Within the task processing, the following components are to be executed:			
	 Buffer changeover for the tasks to be started (task 1 T1 and if required an additional task Tn) 			
	System mode of function blocks in T1 corresponding to the block sequence			
	 System mode of function blocks in Tn corresponding to the block sequence 			
	 Importing signal interconnections in T1 and standard mode T1 			
	Exporting signal interconnections from T1			
	Importing signal interconnections in Tn and the standard mode Tn			
	Exporting signal interconnections from Tn			
	The components relevant for the process image are highlighted; for the other components refer to the Chapter "Description and use of the signal transfer mechanisms".			

2.1.7.1 Implementing the process image

System mode

The system mode is used to implement the process image before a task is computed. In the following Fig. 2-6 Sequence of the function block computation in the system- and standard modes, the sequence in which the function blocks are executed in the system- and standard mode is illustrated in cyclic operation (CPU in the RUN status). In this example, functions blocks 10 and 30 in the system mode are computed within the process image so that the results can be subsequently consistently used in the standard mode.

Fig. 2-6 Sequence of the function block computation in the system- and standard modes

The system mode starts immediately after the initiating event (process interrupt or basic clock cycle) in order to create a real time process image. The execution between the jump into the operating system up to the end of the system mode can only be interrupted by a higher priority system mode. Among other things, function blocks with access to the periphery are computed.

2.1.7.2 Process image for cyclic tasks

Input blocks with system component

For input blocks, which have a system component or whose system component is activated, the input signals are read-in from the hardware and buffered. The signals are evaluated with the blocks in the standard mode of the same cycle.

Fig. 2-7 Sequence of the system mode for input blocks

Output blocks with system component

For output blocks, which have a system component and whose system component is activated, in the standard mode of the previous cycle, the signals to be output are calculated corresponding to the block function and the actual connection (I/O) values. These signals are buffered. Signals are output to the hardware in the system mode at the start of the next sampling cycle.

Fig. 2-8 Sequence of the system mode for output blocks

As the system component is essentially restricted to the input and output of hardware signals, the system mode is processed within just a few micro seconds.

For several input/output blocks, the "DM" block input can be used to control whether an input/output is made in the system mode or in the standard mode. For computation in the **standard mode**, the interface signals at the blocks are computed, bypassing the process image within the **standard mode**. For input blocks, the signals are read-in immediately before being computed, and for output blocks, immediately after their computation.

2.1.7.3 Process image for interrupt tasks

An interrupt task has essentially the same behavior as a cyclic task.

Mode of operation of an interrupt task However it cannot be interrupted by cyclic tasks. Thus, e. g. for longer computation times of an interrupt task, the start of cyclic tasks and therefore output to the hardware can be delayed. This is because, for output blocks with system mode, the signal is only output to the hardware after the next task has been started.

> Further it should be precisely checked when using input/output blocks with the system mode within an interrupt task for non quasi-cyclic interrupts. In this case, the output is only realized after the next interrupt event whose timing is unknown. For specific input/output blocks, this problem can be remedied by using a block input so that input/output is realized in the standard mode.

2.1.8 Significance and application of the CPU synchronization

Configuring the CPU synchronization	The CPU synchronization is configured in the HWConfig program section. The directory of the appropriate SIMATIC TDC/SIMADYN D station is opened in the SIMATIC manager and HWConfig is activated by double clicking on the hardware symbol in the righthand section of the window. Now select the required CPU module. There are separate dialog windows to synchronize the basic sampling time of the CPUs and the interrupt tasks under Edit > Object characteristics .
SIMADYN D synchronizing	SIMATIC TDC/SIMADYN D provides the following synchronizing mechanisms:
mechanisms	Time synchronizing
	 Synchronizing its own basic clock cycle to the clock cycle of a master CPU
	 Synchronizing its own basic clock cycle to an interrupt task of a master CPU
	Synchronizing its own interrupt task to interrupt tasks of a master CPU
	Synchronizing several stations
	Response when synchronization fails
	Configuring the CPU basic clock cycle synchronization
	Configuring the interrupt task-synchronization
2.1.8.1 Time sync	hronization
	The real-time clocks of all CPUs in a SIMATIC TDC/SIMADYN D station

The real-time clocks of all CPUs in a SIMATIC TDC/SIMADYN D station are synchronized to the clock of CPU inserted at slot 1. This prevents the various CPU clocks from drifting apart. This synchronization is automatically realized every 10 s.

2.1.8.2 Synchronizing its own basic clock cycle to the basic clock cycle of a master CPU

The basic clock cycle can be switched from a CPU to the L- and/or C bus of the subrack and can be received from other CPUs of the station, or by several SIMATIC TDC/SIMADYN D stations, which are coupled using the rack coupling or GDM coupling. For the receiver CPU, an offset can be configured between the basic sampling time and the transmitter basic sampling time. This time offset can also then be changed online with the CPU in the RUN status using the DTS function block type.

2.1.8.3 Synchronizing its own basic clock cycle to an interrupt task of a master CPU

At the start or at the end of an interrupt task of a transmitting CPU, it is possible to initiate an L- or C-bus interrupt. This can be received from one or several other receiver CPUs where it is then used to generate the basic clock cycle.

2.1.8.4 Synchronizing its own interrupt tasks to interrupt tasks of a master CPU

To synchronize an interrupt task it is possible to use an L- or C-bus interrupt, initiated at the start or the end of an interrupt task from a transmitter CPU. This interrupt can be received at one or several other receiver CPUs in order to initiate an interrupt-controlled task there.

2.1.8.5 Synchronizing several SIMATIC TDC/SIMADYN D stations

CS12, CS13 and CS14 modules (master rack coupling) and CS22 (slave rack coupling) (SIMADYN D) or CP52M0, CP52IO and CP52A0 (SIMATIC TDC) are available to synchronize the basic sampling time over several stations. In this case, the bus systems of the two stations are connected via coupling modules.

Further information

on synchronization please refer to the "System and communication configuring D7-SYS" Manual.

2.1.8.6 Response when the synchronization fails

The basic clock cycle is monitored on the synchronized receiver CPUs using a hardware timer. If the transmitted clock is no longer available for 4 cycles, the basic clock timer on the CPU module, generates the basic clock cycle. The basic sampling time configured in HWConfig is used as basis, which in this case serves as the equivalent sampling time. The changeover to the basic clock cycle of the CPU is signaled by a flashing "E" on the 7-segment display of the CPU module, and is flagged in the error field. When the external clock source kicks in again, this can be again used on the basic sampling time clock receiver using the "DTS" function block type.

2.1.8.7 Configuring the CPU basic clock cycle synchronization

The configuring is set in the dialog window "Basic clock cycle" of HWConfig (refer to the Chapter "Significance and use of CPU synchronization). The synchronization is disabled as default.

Basic clock cycle generated by the CPU itself	If the CPU should generate a basic clock cycle itself, the following settings must be made in the dialog field "Basic clock cycle" (refer to Fig. Dialog field, basic clock cycle in HWConfig):			
	Activate the "Generate" button with a mouse click.			
	• Enter the required basic sampling time from 0.1 to 16 ms.			
	In the lower section of the window it can be defined as to whether the selected CPU should be used as the source for the basic clock cycle. The appropriate bus must be set for this purpose. "No" is pre-assigned (default).			
Synchronizing the basic clock cycle	If the basic clock cycle is to be synchronized to another source, HWConfig requires the following settings:			
to a source.	Activate the "Synchronizing" button with a mouse click.			
	• Select the required source from a list, e. g.			
	L- or C-bus basic clock cycle			
	L- or C-bus interrupt (SIMADYN D)			
	bus interrupt (SIMATIC TDC)			
	• Enter an equivalent sampling time of 0.1 to 16 ms.			
	Pre-assignment = 1.0 ms (default)			
	 If required, enter a synchronization delay time of 0.1 ms up to the equivalent sampling time. 			

No sampling time is pre-assigned (default value)

operties						
General	Addresses	Clock cycle Cyclic tasks		Int. tasks	Stop	
Basi	c cycle (T0)					
0 C	reate			4.0	T me	
				1.0		
O S	synchronizing			_		
		Source	:	L bus ba	asic cycle	
		Equiv. sample time	:	1.0	🛪 ms	
		Delay time:		keine	t ms	
		,				
Tran	ismit basic cy	/cle:		no		▼
OK					Exit	Help

Fig. 2-9 Dialog field, basic clock cycle in HWConfig

2.1.8.8 Configuring the interrupt task synchronization

	The setting is made in the dialog window "Interrupt tasks" of the HWConfig (refer to the Chapter "Significance and use of CPU synchronization"). The synchronization is disabled as default, i. e. no process interrupts are defined and a bus interrupt is not transmitted.
Setting the interrupt task	 The mouse is used to select one of the 8 possible interrupt tasks I1 - I8.
synchronization	• Select the required source of the defined process interrupt from a list, e. g.
	C bus interrupt or
	CPU counter C1 or C2
	• Enter an equivalent sampling time from 0.1 to 16 ms.
CPU as interrupt source for the subrack	In the lower window section, select whether the selected CPU is to function as the process interrupt source for the subrack. In this case, one of the defined interrupt tasks I1 - I8 must be selected, and transmitted on the L- and/or C bus. It can be decided as to whether the interrupt task is sent at the start or at the end of the interrupt task processing.

Transmitting at the start of interrupt task processing	It is practical to transmit the interrupt task at the start, if several alarm interrupts must start in synchronism on several CPU modules without any delay. However, the interrupt task on the receiver CPU module may end before the interrupt task on the transmitting CPU module as the transmitting task was inhibited by a higher-priority interrupt.
Transmitting at the end of of interrupt task processing	If transmitted at the end, it is ensured that the task on the receive side is not started before the transmit task has been completed. This second possibility can be used when data is being transferred from a transmit- to a receive task.

2.1.8.9 Example of a synchronization configuration

Fig. 2-10 Synchronization configuration

DescriptionIn Fig. 2-10Synchronization configuration, CPU 1 transmits its basic
clock cycle onto the L bus. Further, the C bus interrupt is used as
interrupt event by an interrupt-controlled task of the CPU 1.

CPU 2 retrieves its basic clock cycle from the basic clock line of the L bus and switches the interrupt from counter C1 (configuration with function block PAC) to the L bus interrupt line.

CPU 3 retrieves its basic clock cycle from the L bus interrupt line and switches the interrupt, received via the binary input (configuration with function block PAI) to the C bus interrupt line.

2.1.9 Significance of the processor utilization

2.1.9.1 Determining the approximate processor utilization

When compiling, the CFC determines a value for the CPU computation time utilization. A list is accessed, in which the computation time of a block is entered for each function block type. When developing the blocks, these computation times are determined for the "worst case", and are specified in the User documentation, function block library (Edition in Autumn 1997).

For several function blocks, especially for blocks, which access hardware, the worst case situation will generally result in higher time and therefore a typical computation type is used (e. g. for medium bus load levels). Based on these nominal values, for several function block types, the actual computation time can fluctuate significantly.

The computation time, entered in the block catalog, specifies the typical block computation time on a PM5 in μ s. However, this value especially for communication blocks, can deviate from the actually required time, depending on the quantity of data to be transferred.
After the charts of a CPU have been compiled using the CFC editor via the menu item **Chart > Compile** the path of a MAP list is specified in an info window or in an error window. The processor utilization, entered in the MAP list, is an approximate value for the reasons mentioned above, which is generally accurate to approximately +/- 10 %.

2.1.9.2 Calculating the precise processor utilization

Function block PSL The precise CPU utilization can only be determined when the PSL "Permanent System Load" block is configured. The PSL block is configured in any cyclic task in the CPU to be investigated.

It has 5 outputs (Y1..5) which display the actual utilization of the individual tasks in the form of a load factor. The displayed factor should not exceed 1.0 (100%). Values exceeding 1.0 indicate that a CPU is overloaded.

Further, the PSL block has 5 inputs (T1..5) which, for each task, can be used to simulate an additional load in milliseconds (ms). It is then possible to read how such a load effects the utilization of the individual tasks at the outputs. The utilization is determined by measuring the task run times and then dividing this by the actual sampling time. Higher priority tasks occur within the run time of a task which extend the run time and noticeably increase the utilization. Thus, by just adding these values, it isn't possible to obtain an overall utilization level.

Fig. 2-11 Calculating the run time

2.1.9.3 Mode of operation of the task administrator

The mode of operation of the task administrator is illustrated in this Chapter in Fig. 2-12 Sequence of a configured task.

If a task can be completed within a basic sampling time due to a low computation time, then this is illustrated in the 1st cycle.

	If a task can no longer be completed within a basic sampling time due to a higher computation time, then it is completed in the following basic cycles. The tasks with short sampling times are completed before tasks with long sampling times, i. e. T1 before T2, before T3 before T4 before This distribution is permissible, i. e. without cycle error, as long as the required sampling times are maintained (refer to the 2nd and 3rd cycle).
Cycle errors	If the computation time loading becomes higher, for the task with the longest sampling time, at same stage a cycle error will occur. This means that the sum of the function blocks cannot be computed completely within the configured sampling time.
NOTE	If a specific number of cycle errors is exceeded, an "E" error ID is set, and is displayed in the 7-segment display on the front panel of the CPU, if this is the highest priority error status of the CPU at this time.

In addition to the configurable interrupt tasks, the cyclic tasks are interrupted, especially by communication interrupts. These interrupts ensure that, for example, the data to be transmitted and received via the serial interfaces is processed before new data is received. Transmit- and receive interrupts such as these can occur independently of the configured cycle time of the appropriate communication blocks at almost any instant in time. As result of this, and the unpredictable occurrence of interrupt tasks, if the process utilization is extremely high, each cyclic task can generate one or several cycle errors due to task back-up.

This can be especially noticed, if

- the utilization by the task with the lowest sampling time is extremely high, and
- the functions computed in this task are extremely sensitive to sporadic sampling cycle failures, (e. g. closed-loop position controls).

Fig. 2-12 Sequence of a configured task

2.1.9.4 Eliminating cycle errors

The modular SIMATIC TDC/SIMADYN D provides the following possibilities of eliminating cycle errors:

- · Increasing the configured basic sampling time
- Shifting configured blocks from fast to slow tasks.
- Using several or higher-performance CPUs or several SIMATIC TDC/SIMADYN D stations
- · Reducing the number of blocks or changing the block types
- · Checking the necessity to have communication interfaces on this CPU
- · Checking the necessity for interrupt function packages on this CPU

2.1.10 Technical data of the operating system

2.1.10.1 Features

	The most important pro are specified in the foll	operties and technical data of the operating system owing.
Number of CPU modules	A maximum of 8 (SIMA be inserted in a subrac not occupied by CPU r	ADYN D) or 20 (SIMATIC TDC) CPU modules can ck. A CPU module requires 1 slot. Slots which are nodules can have peripheral modules.
Number of function diagrams	The maximum number particular software, but	of function diagrams is dependent on the tis approximately 65536.
Cvclic tasks	System diagram	Available automatically
	Basic sampling time T0 can be configured	From 0.1 [ms] to 16 [ms] in steps of 0.1 [ms]
	Number of configurable cyclic tasks	5
	From the basic sampling time	ТО
	То	T0 * (2 ** 15)
	Configurable from	T0 to 32768 * T0 e. g. of 1 [ms] to 32768 [s]

Table 2-10Technical data of the cyclic task

NOTE On a case for case basis it should be checked the most cost-effective way to achieve the desired result.

Interrupt tasks

Number of config	gurable interrupt tasks	8
Number of availa	able interrupt sources, total	54 (SIMADYN D) or 19 (SIMATIC TDC)
Of which		
	Software interrupts	8
	CPU timer interrupts	2
	Interrupts for binary inputs	4
	Bus interrupts (L/C)	2 (SIMADYN D) or 3 (SIMATIC TDC)
	LE bus interrupt	4 (only SIMADYN D)
	LE bus interrupt, extended	32 (only SIMADYN D)
	Only T400 ISL, ISR	2

Table 2-11 Technical data of the interrupt task

Computation times of the operating system

The run times of the operating system are specified in the following, based on the PM5 CPU module. For PM6 CPU modules, the computation time is shortened to approximately one third of the specified times.

The signals, which are transferred along the L- and/or C bus represent an almost consistent system load, as the bus is always clocked at 8 MHz.

The minimum time is shown in the following table which is required to process each cycle of a task (refer above for the basis for the calculations!):

Time to start	40 µs
Time to end	40 µs
Additional component for a local buffer system	20 µs
C-bus buffer system	20 µs
L-bus buffer system	20 µs

Table 2-12Computation times of the operating system

Memory
requirement of the
operating systemThe code and data of the operating system are copied from the memory
module into the CPU RAM on the CPU module and the data is
"unzipped". Memory requirements are as follows:• CPU-RAM area: 400 Kbyte
• Memory module area: 200 Kbyte ("zipped")

On the communication buffer modules, the operating system after the start uses 1 Kbyte of the C-bus- and the L-bus buffer memory as data area to administer operating system lists. This is supplemented by the appropriate memory requirement, depending on the configured software, for the buffer system and additional components, e. g. communications.

Operating system version	The operating system is identified by a version ID in the form "yymmddVxyz". The significance of the individual letters is
	• yy: Year, mm: Month, dd: Day
	"V": Version
	xzy: Version number
	e. g. for version 5.0 as "961201V500".

2.1.10.2The basic operating system functions

Operating system The operating system is comprised of the following components:

- Task administrator for cyclic- and interrupt controlled processing
- Hardware and software initialization
- Memory administration (buffer administration)
- Operating system data and lists
- Interface to the central AMC lists
- Coupling to the other components (system interfaces)

The operating system is capable of multi-processing and multi-tasking.

The basic operating system functions are embedded in the overall system, whereby these represent the most important interfaces to the environment.

Operating system functions	Initiated by
Initialization	RESET
Cyclic processing	Sampling time timer
Interrupt-controlled processing	Process interrupts
Process image	
Exception handling and diagnostics	System interrupts
Communications, I/O	Input/output interrupts
Service	
User program	
Utility programs	

Table 2-13 Basic operating system functions

Initialization Initialization is initiated by powering-up the power supply or depressing the RESET button to output a reset pulse. The initialization conditions/prepares the hardware and software so that the system can go into the standard operating mode (RUN status).

Cyclic processing (RUN operating status)	The task administrator ensures that the functions, assigned to the various tasks are cyclically processed. The cyclic tasks are in a ratio to the power of 2 to each other
,	T(i) = T(0) * (2 ** j) with $T(0)$ as basic sampling time,
	j defines the sampling time value with $0 \le j \le 15$
	i numbers the sampling times with $1 \le i \le 5$.
Example:	For a basic sampling time of 1 ms, the sampling times can be 1 ms, 2 ms, 8 ms, 32 ms and 128 ms. The basic sampling time is defined for each CPU module during configuring, using the HWConfig program section of the SIMATIC Manager. The sampling times of the tasks running on the particular CPU module are also configured at this time.
	In order to prevent bottlenecks, the tasks are started, phase-shifted with the basic clock cycle, so that with the basic clock cycle, the start of a second, lower-priority task is flagged. As result of the discrete distribution of the sampling times, based on a ratio to the power of 2, also low-priority tasks are completely taken into account. This means that it no longer occurs as a low-priority sampling time on the basic clock cycle. (refer to the Chapter "Processor utilization"). The priorities of the various tasks decreases with increasing sampling time.
	The task administrator is started with the clock cycle of the basic sampling time of the sampling time timer. This determines the second task, task Tn to be started in addition to T1 (Tn from {T2T5}). If the task to be started has a lower priority than an interrupted task, its start is buffered, and the interrupted task is continued. Otherwise, the determined task is started. The status of the interrupted task is written into a task-specific data area, which allows the task to be further processed as soon as a higher-priority task is no longer present (refer to Fig. Calculating the run time).
	The time component required by the operating system itself is not taken into account in this description. If the diagram was to be precise, then the actual starting instant of the task would be shifted by these amounts.
Interrupt-controlled processing	In addition to cyclic processing, the operating system also administers tasks, which are started by non-cyclic interrupts, especially process interrupts. Interrupt sources could be:
	software interrupts
	CPU-timer interrupts
	L/C-bus interrupts
	LE-bus interrupts
	The priority of the interrupt tasks is defined by the data configured in HWConfig ($11 > 12 > 18$). The programming engineer programming the user program configures, using HWConfig, the interrupt sources which he or she requires for his or her application, and their processing in the interrupt-controlled tasks.

Process image (system mode)	Before a task is processed, it is first investigated whether an associated process image must be updated. If yes, this is realized before the task is started, by calling-up the system mode of the function blocks (refer to the Chapter "Significance and use of the process image"). The update is referred to:
	 binary inputs/outputs, for example, the status images for controller enable signals and the position of limit switches.
	 analog inputs/outputs, for example, values for temperature, speed, etc.
NOTE	The system mode is started for both tasks to be started before standard mode processing (refer to the Chapter "Significance and use of the process image").
Error differentiation	SIMATIC TDC/SIMADYN D differentiates between errors, which occur during initialization and those which occur during standard operation.
	Errors from the initialization (INIT operating status) result that the system is not released for start (transition into the RUN operating status).
	For errors in standard operation (RUN status), a differentiation should be made whether processing is to be continued or terminated.
	The system informs the user about its status, especially about the error statuses, using the 7-segment display on the CPU module.
	When an error situation occurs, detailed information is deposited in the error data fields of the operating system. These error data fields permit a precise error analysis to be made.
	This data can be read-out and changed using the service utility.
	The significance of the error signals and information can be taken from the online help "D7-SYS, Help on events".
Communications	Communications handles all of the input/output data transfer between the hardware as well as the associated software components and the user interfaces. The interfaces and their parameterization are configured in the user program using CFC.
Service utility	The service utility is the central interface of the CPU modules. It is an instrument for start-up, diagnostics and troubleshooting.
	As the processing time of the service utility is undefined, the task associated with it as well as the tasks with lower priority can be blocked. This has been implemented, so that service is allocated a maximum processing time within its cycle (maximum of one basic clock cycle T0).
	The service units form the user interface via which the communications software is controlled.

User program	The user program is used to implement the technological tasks on the target hardware. It is generated at the programmer in the CFC programming language, using the available utility programs such as HWConfig, CFC editor, CFC compiler, linker/locator and the memory module driver.
	The CFC source code of the user program is converted into data structures using the CFC compiler, and loaded on the target hardware where it is processed by the operating system.
Utility programs	Utility programs are basic system functions for the operating system. These include watchdog functions, functions to handle the CPU display, special test- and interrupt routines to handle system errors.
2.1.10.3The servic	e utility
	The service utility provides a pool of information functions so that the user has access to system information on the processor. The service utility is designed as support resource for start-up and testing.
Start-up area	Configured data (setpoints/actual values) are displayed and/or changed here and the software optimized (e. g. interconnection changes, controller times changed etc.).
Testing	Causes of plant/system faults (crashes, run-up problems) and faults, which are caused in the CPU module itself, are identified here.
	All activities of the service utility are controlled via tasks, which are received via "its" data interface (corresponding to the parameterization of the service function block I/O).
	All devices which can process the task- and response language of the utility can be used as handling devices for the service utility. In the SIMATIC TDC/SIMADYN D world, these are the programs (tools) CFC in the test mode and service IBS (service start-up).
NOTE	The user can also use his own tools. They must be compatible with the interface definitions of the service utility. The interface specification can be sourced from ASI 1 R.
	The service utility is made available with the "SER" function block. This function block ensures that none of the messages/data get lost.
Task processing	The service utility differentiates between cyclic and non-cyclic tasks. A non-cyclic task is completed when its response telegram has been sent.
	A cyclic task remains active until it is explicitly terminated, either by being aborted via a reset or as result of a new task. A task comprises of at least one response telegram.
NOTE	The service utility can always only process one task. The next task is only processed if the previous task was responded to.

System loading, response times

The actual service utility processing is realized in a 32 ms sampling time (the next sampling time below 35 ms is selected; the sampling times specified at the SER blocks are not significant for processing). In the cyclic task used, the service blocks are provided a certain computation time, which may use as maximum the basic clock cycle T0. The ratio of the basic clock cycle T0 to the used task defines the CPU performance available and therefore the system loading.

Example 1:

Basic clock cycle T0 = 1 ms; selected sampling time = 32 ms. Every 32 ms, 1 ms is reserved for the service utility. Thus, the system load is calculated of

1ms / 32 ms = 0.03125 = 3.125%

Example 2:

Basic clock cycle T0 = 2ms; selected sampling time = 16 ms. Every 16 ms, 2 ms are reserved for the service utility. Thus, a system load is obtained from

2ms / 16 ms = 0.125 = 12.5%

This available computation time is used by all service blocks to the same extent, i. e. as long as the time is sufficient, if possible, all of the SER blocks are processed once. An SER block processes a maximum of one task per clock cycle. For cyclic tasks, for each clock a maximum of one response telegram is received. The advantage of this mode of operation is that for cyclic tasks, equidistant-timed responses are obtained.

If the reserved computation time is not fully utilized, because, for example, there is no task to be processed, then this time is made avasilable to the system.

For multiple configuring with simultaneous access to system resources which are only available once (e. g. change memory of the memory module), resources are assigned to the first component which makes the request. All others are rejected and output at the latest after 1 second, an error message ("resource occupied") via the data interface.

Behavior under fault conditions In a fault condition (exception), i. e. for initialization errors or online faults, the system goes into the stop mode. Thus, there are special conditions for the service utility. It is then no longer computed in a cyclic task, but runs continuously, started from an exception administrator. Under fault conditions, the service utility cannot be connected to the configured user. In order to still permit system diagnostics, the CPU's own diagnostics interface is connected. The DUST1 protocol runs here (refer to the Chapter "Operating statuses of a CPU module").

2.2 Function description and user instructions

2.2.1 Fatal system error "H"

If a fatal system error occurs, processing (initialization or normal operation) is interrupted, and the system goes into the stop mode. The error cause is available for diagnostic purposes.

NOTE

Before investigating a fatal system error, the INIT_ERR and SYS_ERR system error fields should first be investigated. If errors are entered there (especially hardware (monitoring) errors), then this could be the cause of a fatal system error.

A SAVE area is set-up in the upper area, in the local RAM of each CPU module. This area is not erased at re-initialization, if the status of the RAM copy is appropriate. An error buffer is set-up in this SAVE area, which includes the error protocol (error report) consisting of several messages.

The error buffer consists of an administration part and a ring buffer, in which the error messages are saved. The ring buffer is implemented as buffer which can be overwritten, i. e. if the buffer is full with error messages, then the new messages overwrite the oldest messages.

There are 2 different types of error messages. A long message is output in the case of a non-maskable interrupt NMI. A short message for a power-OFF.

The service communications utility is available, (even if it has not been configured) to troubleshoot fatal system errors. It can be accessed via the local diagnostics interface, after pressing the acknowledge button. Using the service utility, the error causes can be output in plain text. What is especially important is the error cause, specified under an ID code and supplementary ID. If a function block is being calculated at the instant that the system error occurs, then this is output. In addition, the results of the last bus accesses are displayed; these are important, if a bus access is the error cause. Further, all of the process registers are displayed for the system specialists to allow them to make a precise error analyses.

NMI handling When a non-maskable interrupt occurs, this is considered as fatal error and causes initialization or normal operation to be interrupted. All of the modules, inserted in the subracks, are no longer processed.

A large flashing $\stackrel{H}{\rightarrow}$ is displayed on the CPU module display of the faulted module, which caused this fatal error. A large $\stackrel{H}{\rightarrow}$ is displayed as steady display on the other CPU modules which received an NMI as result of the faulted module. The debug monitor can be activated by pressing the acknowledge button or setting the status value.

The symbols output on the 7-segment display have the following significance:

Steady H: CPU module was shutdown by another module.

Flashing H : Fatal error on this CPU module (error cause).

Example for an error protocol (error report) for fatal system errors

Information on the last crash: 01.01.93 04:16:24.9294 h Time: Crash instant ID: #5 CPU 28 (unaligned instruction fetch) Crash cause Supplementary ID: 0x04C4F19A EPC: Crash address and Return jump address: 0x801201f8 address of the function call Running task: Started levels: т2 T2(NRM), T5(NRM), BACKGROUND The running and started tasks FP-KRUMMS.AY0815 (Typ: ADD8F) (ALE: 0x80107D84 CODE: Last processed FB: at the crash instant as well as the processed function on the $0 \pm 801201 \pm 0$) data- and code areas Last L-bus access: Data on the system bus accesses. - Access type: q_read_2byte This data is especially interesting, - BUS address: 0xB0F25874 if an erroneous bus access is - Retries: 0 specified as the cause of the crash Last C-bus access: specified (NMI) and supplementary - Access type: q_read_2byte ID. - BUS address: 0xB4F400B4 - Retries: Ω Register dump of all process registers The processor status at the crash instant: Especially important: EPC : 0x04C4F19A Status : 0xF000FC14 BadVAddr: 0x04C4F19A EPC (crash address, as above) and mdlo : 0x04C4F19A BadVAddr (bad virtual address, fpc_csr : 0x00000F04 address which was erroneously accessed(mainly for ID TLB and (CPU)) CAUTION: The value of a0, a1 (and possibly a2) is not valid! r00/0 : 0x0000000 r01/at: 0x0000000 r02/v0: 0x0000001 r03/v1: 0xB8803000 r04/a0: 0x80064FC8 r05/al: 0x80064F44 r06/a2: 0x000000A r07/a3: 0x0000000 r08/t0: 0x80064FC4 r09/t1: 0x80065048 r10/t2: 0x19999999 r11/t3: 0x0000000 r12/t4: 0x04C4F19A r13/t5: 0x8007FE90 r14/t6: 0x0000000 r15/t7: 0x0000000 r16/s0: 0x800650CC r17/s1: 0x8006511C r18/s2: 0x0000000 r19/s3: 0x8006548C r20/s4: 0x8006548C r21/s5: 0x0000020 r22/s6: 0x800812E0 r23/s7: 0x80400000 r24/t8: 0xFFFFFFF r25/t9: 0x8007FE90 r26/k0: 0x00000210 r28/gp: 0x80088BA0 r29/sp: 0x80064EA8 r30/s8: 0x04C4F19A r27/k1: 0x04C4F19A r31/ra: 0x801201f8 d02: +6.400000e+01 d00: +Denorm d04: +Denorm d06: +9.999000e-01 d08: +4.687500e+01 d10: +Denorm d12: d14:+2.660285e+154 +Denorm d18: +4.687500e+01 d16: +3.000001e+03 d20: d22:+8.329648e+298 ONaN d24: -1.818767e-12 d26:-1.227518e+306 d28:-3.691391e+249 d30:-2.374690e-237 f02: +0.000000e+00 f04: +4.687500e+01 f00: +4.787490e+01 f06: +4.764729e+05 +Denorm f12: +4.787490e+01 0000e+00 f20: -1.693935e+38 f08: +0.000000e+00 f10: f14: -1.960343e+37 f18: +0.000000e+00 f16: +1.024000e+03 f22: ONaN QNaN f28: -6.835168e-27 £24: QNaN f26: f30: -4.550802e-04 ----- End of the diagnostics -----**Causes of fatal** A fatal system error can have the following causes (ID codes). A error supplementary ID describes the error cause in more detail.

Supplementary ID code (precise description)

NMI a non-maskable interrupt second bus clear for task-controlled access bus clear for direct access timeout during L/C-bus arbitration/assignment (module missing/defective, daisy chain missing) ready internal from L/C bus (error on another CPU module) ready internal from the local expansion bus (LE bus) system bus controller overrun timeout when accessing the local periphery spurious interrupt (an interrupt source cannot be identified) direct access to the L/C bus (bypassing the driver functions) CPUexceptional status of the CPU internal error reserved Instruction unknown Svscall unaligned instruction fetch (jump to address which cannot be divided by four) user access to kernel space unaligned load/store to coprozessor 0/2/3 unaligned load/store to L-/C-bus address space break 6/7 not in div/mul context unknown break value reserved exception task running in endless loop FPUFPU exception status fpu fault at non-fpu instruction illegal fpu sub opcode operation on NaNs add/sub/division of infinities mul of infinity and 0 TLB exception status of the TLB TLB modified exception TLB read/write miss (access to illegal address) UTLB miss (access to illegal address) basic cycle time failure TIME OFF power down power down/reset in the normal mode power down/reset in the stop mode (after another exception)

2.2.2 Background processing

If the CPU has no tasks to process during normal operation, it processes the background task.

As background task, the following functions are simultaneously available:

- · the online test mode and
- a service utility

The online test mode is normally processed in the background after initialization was successfully completed. However, if the acknowledge button is pressed at the end of initialization, then only the service communications utility is activated.

Errors in the background processing are saved in the UEB element of the error field SYS_ERR.

2.2.2.1 Online test mode

In the online test mode, for example, a battery test, a memory module checksum test etc. are executed. The memory module checksum routine determines the memory module checksum and compares it with the checksum calculated by the programmer and that saved in the memory module. If a memory module checksum error is identified in the online test mode, the user can remove the error by repeatedly generating the memory module. For battery test errors, he can replace the battery.

2.3 System chart @SIMD

Overview The system chart @SIMD (Part A and B) is a CFC chart made available as standard to the user. They permit standard diagnostics of the hardware and system software.

Program structure The system chart is configured, structured in the following parts

- Acknowledge the error display Acknowledge
- Determine the components which signaled an error Evaluate components Output the identified error
- Display

System chart @SIMD	
	Function block names
Acknowledge	
Pushbutton	ACK Acknowledge
Service intervention	ACK
Evaluate components	
First error field	FER First error
Communications error field	CER Communication error
Task administrator error field	TER Task management error
Hardware failure Monitoring error	HER HW error
User error field	UER User error
Evaluate errors	DER Display error
Display	
Output, 7- segment display	DST Display status
Output, diagnostics LED	DST
Output, status word SIMS, status bit SIMD	SIMS, SIMD

Table 2-14 Detailed information on system chart @SIMD

Description The operating system monitors the hardware and system software. If the monitoring function identifies an error, it flags this by setting the appropriate bits (flags) in the system error field.

> The system chart @SIMD allow the user access to these flags. An output is displayed on the 7-segment display of the CPU module if a flag of a component was set.

If several messages are generated for the 7-segment display, the highest-priority message is output.

Error name	Error display	Priority
Communications error	С	High
Task administrator error	E	
Hardware failure, monitoring error	b	
User-generated error ID	А	
No error present	CPU number	Low

Table 2-15 Error priorities for the message displ

Resetting the flags The flags of the displayed error and the next priority error code is displayed when the acknowledge button on the CPU module is depressed, or an acknowledge signal is issued via a service unit. If there are no errors present, the CPU number is displayed on the 7-segment display as the lowest priority message. In order to identify that the displayed error message was the first to occur, it is displayed flashing.

Mode of operation The sequence diagram illustrates the global program sequence of the system charts. It consists of the three functional components

- identify acknowledge signal
- evaluate components, and
- display.

Identify acknowledge The acknowledge signal is a pulse which is derived from the pushbutton status read-in from the ASI function block or as result of a service intervention at connection ACK000.I (set from 1 to 0). Priority-controlled error fields and therefore their display are acknowledged using this pulse. Output of error codes "C" and "E" can be suppressed by changing the ACK050.I connection from 0 to 1.

- Evaluating The components are evaluated using the function blocks SYF1 and SYF4. The appropriate numbers of the errors fields are documented in the function block description (refer to the reference manual, SIMADYN D function block library). An error field can only be acknowledged if an error was identified for the particular component and this was displayed.
- **Evaluating the first error field** The first error field evaluation determines which error entry was the first to be identified by the system. The error in the first error field is displayed flashing on the 7-segment display.

All of the components are evaluated according to their priority one after the other. The communications error field cannot be acknowledged, as a software change is required in order to remove this error. When the system runs-up, the CPU could be subject to a higher loading. Task administration errors are automatically acknowledged during the system run-up using a counting logic function.

Control using priority logic	A priority logic circuit ensures that only the highest priority component is displayed. The lowest-priority component supplies a bit signal, which changes-over the display from a CPU number display to an error display (UER070.Q). If the highest priority error component is additionally entered in the first error field, the error display is output flashing. An acknowledge pulse only resets one error status of a component and its display.
NOTE	If a displayed error is acknowledged, the error source is still present. Before an error can be removed, the error cause must be determined and removed.
Display	 When there are no errors, the processor number is displayed on the 7-segment display. If a component signals an error, then the appropriate error code is output. The status display on a T400 is realized via a diagnostics LED. The flashing clock cycle is increased if the error is a first error. The status display on a FM 458 is realized via fontside LEDs (refer to User Manual "Application Module FM 458").
Sequence diagram	Pushbutton, service intervention Identify acknowledge Acknowledge pulse First error status Evaluate components Error code Error status 7-segment display Diagnostics LED Status word, -bit Display

Fig. 2-13 Sequence diagram

Interfaces The acknowledge button of the CPU module or the possibility of acknowledging via the service interface is provided as external input of the system chart. The 7-segment display of the CPU module or the diagnostics LED (T400) are available as external outputs for the user display.

The two connections SIMS.QS and SIMD.Q can be evaluated to handle an error in the user program. The error outputs of the individual components are combined to form an error status word via the SIMS function block. The SIMD.Q output connection represents a general error status.

The error status word at the SIMS.QS block connection has the following bit assignment:

Bit	Bit assignment
Bit1	Unused
Bit2	Unused
Bit3	Unused
Bit4	Task administrator error
Bit5	Unused
Bit6	Hardware failure
Bit7	Communications error
Bit8	Unused
Bit9	Unused
Bit10	Unused
Bit11	User-generated error ID
Bit12	Unused
Bit13	Unused
Bit14	Unused
Bit15	Unused
Bit16	Unused

Table 2-16 Bit assignment of the function block connection SIMS.QS

3 Communications configuring

Overview

3.1	Introduction	3-2
3.2	Couplings on the subrack	3-22
3.3	Subrack coupling	3-25
3.4	Industrial Ethernet coupling (SINEC H1)	3-31
3.5	PROFIBUS DP coupling	3-46
3.6	PROFIBUS FDL coupling (SINEC L2 FDL)	3-83
3.7	PROFIBUS FMS coupling (SINEC L2-FMS)	3-88
3.8	DUST1 coupling	3-127
3.9	DUST2 coupling	3-131
3.10	DUST3 coupling	3-133
3.11	DUST7 coupling	3-136
3.12	MPI coupling	3-137
3.13	USS master coupling	3-138
3.14	USS slave coupling	3-146
3.15	Peer-to-peer coupling	3-149
3.16	SIMATIC P-bus coupling	3-151
3.17	SIMOLINK drive coupling	3-160
3.18	Table function	3-177
3.19	Parameter access technique for D7-SYS	3-214
3.20	Communications utility, display control	3-229
3.21	Communications utility, message system	3-239
3.22	Communications utility parameter processing	3-254
3.23	For change tasks, the parameter change rights of the drive converter must be set at the configured interface. Network	3-265
3.24	Communications utility process data	3-270
3.25	Communications utility service	3-288
3.26	Communications utility time of day synchronization	3-291
3.27	Communications with SIMATIC Operator Panels	3-292
3.28	Communications with WinCC (MPI)	3-304
3.29	Communications with WinCC (SINEC H1)	3-306

3.1 Introduction

3.1.1 Basic information on communications

General information	Communications permit information and data to be transferred to other systems and devices.
	To establish communications, the following are required:
	a communications utility must be configured together with a link
	a communications interface must be available
Communications utility	The communications utility defines the information contents (e. g. process data) during communications.
Coupling	The coupling defines the hardware (e. g. CS7/SS52) and the data transfer protocol (e. g. PROFIBUS DP) for communications.
Couplings and communication interfaces	The particular application and communication capabilities of the partner define the communications interface and the data coupling.

3.1.1.1 Overview of the various data couplings

General Couplings are configured in the CFC application using the central coupling blocks.

CPU-local coupling	Used for the communications partner	CPU-internal to test transmitters/receivers
	Hardware required	• CPU
	Communications utility	Process data
	Central coupling block	• @CPN
	Features	SIMADYN D-internal memory coupling

Table 3-1CPU-local coupling

Communications buffer coupling

Used for the communications partner	•	CPU-CPU communications for higher data quantities as an alternative to \$ signals
Hardware required	•	Communications buffer module (e. g. MM11)
Communications utility	•	Process data
Central coupling block	•	@CMM
Features	•	SIMADYN D-internal memory coupling

Table 3-2 Communications buffer coupling

Subrack coupling

Used for the communications partner	SIMADYN D
Hardware required	Communication modules for the master interface:
	CS12 (master for 1 slaves)
	CS13 (master for 4 slaves)
	CS14 (master for 8 slaves)
Hardware required	Communications module for the slave interface:
	• CS22
Communication utility	Process data, message system, trace
Central coupling	• @CS1
block	• @CS2
Features	Fiber-optic cable
	CS12: Point-to-point coupling with CS22 slave interface
	CS13: Coupling with 4slave interfaces CS22
	CS14: Coupling with 8 slave interfaces CS22
	CS22: Coupling with master interfaces CS12, CS13 or CS14
	Parallel coupling of up to 9 SIMADYN D subracks
	All subracks can be synchronized
	Uniform system clock possible (unified)
	Fast
	• The maximum distance between 2 subracks is 500 m
	• The master and slave can be disabled (disconnected) at any time
	Can only be used with subracks which have a C bus

Table 3-3 Subrack coupling

Industrial Ethernet (SINEC H1)

Used for the communications	SIMADYN D
	SIMATIC S5/S7
partitor	Third-party systems
	• COROS
Hardware required	CSH11 communications module
Communication utility	Layer 2: Process data
	Layer 4: Process data, message system
	Layer 7: (STF): Process data and message system
Central coupling block	• @CSH11
Features	• Standardized bus according to Ethernet (IEEE 802.3)
	A maximum of 1024 nodes can be coupled
	Baud rate: 10 Mbaud
	The SINEC system time can be input
	 The bus can be parameterized using the NML software

 Table 3-4
 Industrial Ethernet coupling (SINEC H1)

Used for the SIMATIC S5/S7 • **PROFIBUS DP** communications • SIMOVERT/SIMOREG drive converters partner • ET200 • SIMADYN D • Certified third-party equipment/devices Hardware required CS7 communications module with SS52 • communications module Communications • Process data utility • Parameter processing Central coupling @CSPRO • block Features Standardized multi-master bus for communications ٠ between SIMADYN D and a maximum of 123 communication partners Master slave principle (CS7/SS52 is master and/or • slave) PROFIBUS standard according to EN 50170 • Fast • Max. 12 Mbaud • Maximum net data length, 244 bytes • Bus is parameterized using the COM PROFIBUS • software

Table 3-5 PROFIBUS DP coupling

System- and communication configuring D7-SYS - SIMADYN D Edition 12.2003

PROFIBUS FDL

Used for the communications partner	 SIMADYN D (only if PROFIBUS FDL is used as a result of other communication partners)
	SIMATIC S5/S7
	Certified third-party equipment/devices
Hardware required	 Master: CS7 communications module with SS5 communications module
Communications utility	Process data
Central coupling block	• @CSL2L
Features	 Standardized multi-master bus to couple SIMADYN D (master) to a maximum of 126 coupling partners
	Token principle with secondary master-slave principle
	 PROFIBUS Standard according to EN 50170
	Max. 1.5 Mbaud
	Maximum net data length 232 bytes

Table 3-6PROFIBUS FDL coupling

PROFIBUS FMS

Used for the communications partner	 SIMADYN D (only if PROFIBUS FMS is used as a result of other communication partners)
	SIMATIC S5/S7
	Certified third-party equipment/devices
Hardware required	 Master: CS7 communications module with SS5 communications module
Communications	Process data
utility	Message system
Central coupling block	• @CSL2F
Features	 Standardized multi-master bus to couple SIMADYN D (master) to a maximum of 126 coupling partners
	Token principle with secondary master-slave principle
	 PROFIBUS standard according to EN 50170
	 Master-master- and master-slave communications possible
	Max. 1.5 Mbaud
	 Maximum net data length 232 bytes
	 The bus can be parameterized using COM SS5 software

Table 3-7 PROFIBUS FMS coupling

DUST1

Used for the communications partner	• CFC
	Basic service tool
	SIMADYN D
Hardware required	 CS7 communications module with SS4 communications module
Communications utility	Service, process data
Central coupling block	• @CSD01
Features	Low-cost, point-to-point connection
	• 2400, 4800, 9600 or 19200 baud
	• Either a 20 mA- or V.24 interface can be used
	Maximum net data length, 248 bytes

Table 3-8 DUST 1 coupling

DUST2

Used for the communications partner	Printer
Hardware required	 CS7 communications module with SS4 communications module
Communications utility	Message system
Central coupling block	• @CSD02
Features	Low-cost, point-to-point connection
	• 2400, 4800, 9600 or 19200 baud
	• Either a 20 mA- or V.24 interface can be used

Table 3-9 DUST2 coupling

DUST3

Used for the communications partner	•	SIMATIC S5 Other systems, which are suitable for the 3964R/RK512 protocol (e. g. Allen-Bradley)
Hardware required	•	CS7 communications module with SS4 communications module
Communications utility	•	Process data
Central coupling block	•	@CSD03
Features	•	Point-to-point connection
	•	3964 (R) data transfer protocol with/without RK512 communications protocol
	•	2400, 4800, 9600 or 19200 baud
	•	Either 20mA- or V.24 interface possible
	•	Maximum net data length, 750 bytes

Table 3-10 DUST3 coupling

USS master

Used for the communications	SIMOVERT, SIMOREG drive converters
	OP2 operator control devices
	VD1 numerical display
Hardware required	 Master: CS7 communications module with SS4 communications module
Communications	Process data
utility	Parameter processing
	Message system
	• Display
Central coupling block	• @CSU
Features	 Single-master bus for communications between SIMADYN D (master) with a maximum of 31 communication partners
	Master-slave principle (CS7/SS4 is the master)
	 9,6, 19,2, 38,4, 93,75 or 187,5 kbaud
	 For drive converters: Maximum net data length is 28 bytes

Table 3-11USS master coupling

• CFC
WinCC
SIMATIC-OPs
CS7 communications module with SS52 communications module
Service
S7 communications
• @CSMPI
Multi-master bus with a maximum of 126 nodes
• 187,5 kbaud
Standard for SIMATIC S7

Table 3-12 MPI coupling

3.1.2 Overview of the communication utilities

General Various data can be transferred via the communication interfaces, for example, process data and messages.

The communication utilities define which information/data is to be transferred. The communication utilities are defined by configuring the communication modules.

MPI

Communication utilities	Communications utility	Description	Communication blocks to be configured
	Display control	Values can be transferred and changed. (OP2, VD1)	Function blocks for displays: @DIS, DIS
	Message system	Establishing alarm- and fault systems	Special message blocks: @MSC, MER, MSI
	Parameter processing	Reading and processing parameter values from drive converters	@DPH, DPI
	Process data	Transferring process data (setpoints and actual values)	Send- and receive blocks: CTV, CRV, CCC4, CDC4
	Service	Diagnostics and analysis of CPU programs / CFC	Service- function block: SER
	Time synchronization	Time synchronization of all of the CPUs used (e. g. in order to compare messages with a time stamp).	Special function blocks: RTC
	Data trace	Trace process quantities	@TCP, TR
	Network	Transparent data transfer beyond the subrack	@NMC,
	S7 communications	Operator handling and visualization of CPU program / CFC	Communication function block: S7OS

Table 3-13	Overview of the	communication	utilities

Communication block I/Os 3.1.3

Initialization input CTS 3.1.3.1

Communication blocks which access a data interface have a CTS input.

Data at the	
initialization	input

1. The configured name for the communications module

Syntax for module names:

- the name is 1 - 6 characters long

The following are specified at the CTS input:

- 1st character: A - Z
- 2nd 6th characters: A Z, 0 9, _
- 2. Connector of the data interface if the data interface is on a CS7 communications module

Syntax for the connector designation:

Example of data entry at CTS

- enter "." after the module name
- the name after "." is 3 characters long
- "X01", "X02" or "X03"

Slot	Module	Configured module name in HWConfig	Possible data entry at the CTS input
S01	PM5	"D01_P1"	"D01_P1"
S03	MM11	"KOPPEL"	"KOPPEL"
S04	CS7	An SS4 is inserted at "KOMM1" at X01, and an SS5 at X02)	"KOMM1.X01" "KOMM1.X02"
S06	CSH11	"H1"	"H1"

Table 3-14Configuring example of a subrack

3.1.3.2 Address connections AT, AR and US

General	Communication blocks, which can access a data interface, have an address connection.	
Address connection types	Depending on the particular block type, a differentiation is made between three address connection types:	
	AT connection: Available when transmitting	
	AR connection: Available when receiving	
	US connection: Available for function blocks, which are processing a send- and a receive channel	
Possible address connection data	The data entries at the address connection are independent of types AT, AR or US. The possible data are:	
	"Channel name"	
	"Channel name. Address stage 1"	
	"Channel name. Address stage 1. Address stage 2"	
Channel name	• The channel name addresses a channel at a data interface.	
	• Transmitter and receiver, which access a data interface with the same channel name, communicate with one another.	
	The channel name consists of a maximum of 8 ASCII characters, excluding "Point" and "@".	
NOTE	It is not checked as to whether a channel name is configured a multiple number of times. The configuring engineer must uniquely assign the channel names at a data interface for each transmitter/receiver at the AT,	

AR or US connections. If this condition is not fulfilled, then transmitter/receiver may be used a multiple number of times, but • uncoordinated. • the transmitter/receiver could log-off with a communications error. Exceptions: • Several transmitters are permitted for the "Select" data transfer mode. Several receivers are permitted for the "Multiple" data transfer mode. There is address stage 1 and address stage 2. Address stages Several couplings, for example, PROFIBUS, require the address stage to be specified for data transfer. For subrack couplings, for example, address stages are not specified. • Address stage 1 is a maximum of 14 characters long, address stage 2, maximum 20 characters. • Significance and contents of the address stages are described for the particular coupling. 3.1.3.3 Data transfer mode, MOD input

Overview There are five various data transfer modi for the various communication requirements:

- handshake
- refresh
- select
- multiple
- image

transfer mode

Selecting the data The data transfer mode is specified at the MOD connection of the appropriate transmitter or receiver.

"Handshake" data The "Handshake" data transfer mode is used,

- if information loss may not occur due to data being overwritten, and
- if there is precisely one receiver for each transmitter.

"Handshake" defines a sequential channel processing. The transmitter first deposits a new data set in the channel after the receiver has acknowledged that it has received the first data set. A net data buffer is provided for data transfer.

The transmitter inputs the net data into the channel in an operating cycle and the receiver reads them out in an operating cycle.

Fig. 3-1 Data transfer in the "Handshake" mode

"Refresh" data transfer mode

The "Refresh" data transfer mode is used,

- if the latest data is always to be made available to a receiver and
- if there is precisely one receiver for each transmitter.

"Refresh" overwrites when it transfers data. The transmitter always deposits the latest data set in the channel without the receiver having acknowledged that it has received the last data set. There are two net data buffers for data transfer, which are used as alternating buffer system. The transmitter flags in which buffer the latest data are located.

Fig. 3-2 Data transfer in the "Refresh" mode

"Select" data transfer mode

The "Select" data transfer mode is used,

- if information loss may not occur due to data being overwritten, and
- if there can be as many transmitters as required for one receiver

"Select" defines a sequential channel processing. If the receiver acknowledges that it has received the last data set, then the transmitter deposits a new data set in the channel. A net data buffer is provided for data transfer. A channel administrator controls the data transfer.

All of the configured transmitters use the same net data buffer. There is no defined sending sequence for the transmitter. The first one sends first. In order to achieve controlled data transfer, a "1" may only be specified at one transmitter at the EN connection.

The transmitter must be configured in a shorter sampling time than the receiver.

Fig. 3-3 Data transfer in the "Select" mode

"Multiple" data transfer mode

The "Multiple" data transfer mode is used,

- if receivers are to always be provided with the latest data, and
- if as many receivers as required are available for each transmitter.

"Multiple" overwrites data when transferring data. The transmitter always deposits the latest data set in the channel without the receiver first acknowledging that it has received the last data set.

If a transmitter overwrites a buffer, from which a receiver is presently reading, then the receiver rejects the data which were last received. Receive is repeated in the next operating cycle.

There are two net data buffers for data transfer, which are used as alternating buffer system. The transmitter flags in which buffer the latest data are located.

The receivers must be configured in the same or shorter sampling time than the transmitter (the receivers must therefore operate faster).

Fig. 3-4 Data transfer in the "Multiple" mode

"Image" data transfer mode

The "Image" data transfer mode" is used for the FM 458-1 DP to communicate via the PROFIBUS DP interface,

- if all of the receivers, which are configured in a task, should be provided with data that come from the same DP cycle,
- if all transmitters, which are configured in the same task, wish to send their data to the DP slaves in the same DP cycle.

To do this, transmitter and receiver FBs synchronize themselves within a task in order to supply consistent data. They form a so-called "**consistency group**". All receiver FBs, associated with such a consistency group, fetch their net (useful) data from a common alternating buffer and all of the transmitter FBs deposit their data in such a buffer.

"Image" is an overwriting data exchange (refer to refresh). There are two net (useful) data buffers which are used for data exchange. They are used as alternating buffer system.

This data transfer mode is only permitted for the PROFIBUS DP interface of the FM458-1 DP application module.

Fig. 3-5 Data transfer in the "Image" mode

3.1.3.4 Firmware status, ECL, ECO connection

General Central coupling blocks, which communicate with a firmware (e. g. @CSD01 or @CSH11) have outputs ECL and ECO.

- **Function** The outputs ECL and ECO indicate the status of the appropriate firmware:
 - ECL=0 and ECO=0: The firmware is in an error-free condition.
 - ECL=0 and ECO>0: The firmware has an error condition, which can be rectified by the configuring engineer or user. The error cause is described in the Chapters associated with the individual couplings.
 - ECL>0 and ECO>0: An irreparable firmware error is present.

3.1.3.5 Status display, output YTS

- **General** The block outputs an error code or the instantaneous data transfer status at its output YTS.
- Displayed error Real (severe) run-time errors
 - Configuring errors, which are identified when the system is initialized, and which are displayed at the 7-segment display of the CPU using a flashing "C".
 - Temporary status displays and alarms

Fault diagnostics The value at output YTS can be read as decimal number using CFC.

Additional information

regarding the significance of the decimal number, refer to the online help "Help on events".

3.1.4 Mode of operation of the couplings

General A coupling functions as follows:

- CPUs transfer data with a coupling module via the backplane bus (Cor L bus).
- For serial couplings (e. g. for SINEC H1) the firmware on the coupling module "re-structures" and "packages" the data, so that they correspond to the required telegram structure and protocol.
- If the communications partner is also a SIMADYN D (subrack coupling, buffer memory coupling), then the data are not conditioned.

Fig. 3-6 Data transfer between the CPU and coupling module

• The C- and L buses are structured the same, have the same mode of operation and the same performance features.
• The coupling module bus connection defines whether data are trans- ferred between the CPU and the coupling module via the C- or L bus.
As the data interfaces are located on external coupling modules and not locally on a CPU, they can be used by all CPUs in a subrack. However to use a data interface, the CPU and the coupling module must have the same bus connection.
For the local CPU coupling, the data interface is located on the CPU RAM. This data interface <u>cannot</u> be accessed by any of the other subrack CPUs. It can only be used by that CPU on which it was configured.

Basic initialization A coupling module is always initialized (basic initialization) at system runup.

The CPU to the left of the coupling module and with the same bus connection as the coupling module executes the following tasks:

- checks as to whether the coupling module can be "addressed"
- formats the data interface

Configuring the coupling module initializing a coupling (basic initialization), no explicit configuring steps must be executed.

3.1.4.1 Central coupling blocks

Function of the The central coupling blocks have the following functions for a coupling: central coupling blocks Initialization: copying the configured initialization information (this is configured at the initialization inputs) at the data interface defines as to whether the data interface is in an error-free condition. Enabling: after initializing by the central coupling blocks and the coupling module firmware, the central coupling block enables the coupling for all transmitters and receivers in the same subrack. Data transfer can now start. for timing reasons, a coupling is always enabled in the RUN condition after several sampling times. Monitoring: the central coupling blocks provide information at their outputs about the status of the coupling and, if relevant, the status of the firmware. When configuring, the following points must be observed: Configuring the central coupling Exactly one central coupling block must be configured for each blocks coupling. The central coupling blocks can all be configured on a CPU of a subrack or they can be distributed over various CPUs of a subrack. configuring all central coupling blocks on a CPU simplifies, for example, diagnostics. Central coupling blocks have no transmit- or receive functionality. All central coupling blocks must be configured in a sampling time $32 \text{ ms} \le \text{TA} \le 256 \text{ ms}$

Errors	The central coupling block makes an entry into the communications error field and no longer processes the coupling module, if	
	a central coupling block identifies an error when being initialized	
	 a firmware does not respond or manifests erroneous behavior, 	
	the central coupling block is running on the incorrect communications module.	
3.1.4.2 Tra	ansmitters and receivers	
General	Transmitters and receivers are:	
	 function blocks, which access the data interface of a coupling, either writing and/or reading. 	
	• part of the communications utility which uses the coupling.	
	Examples of transmitters:	
	 message output, function block MSI: Copies messages from the message buffer into a data interface 	
	process data transmit block CTV	
	Examples of the receivers:	
	process data receive block CRV	
Data entries at the connections	As transmitters and receivers don't differentiate between the individual couplings, at the block inputs of the transmitter and receiver, a coupling type must not be specified.	
I/O, trans./	CTS input to specify the coupling module	
receivers	 address connection AR, AT or US to specify channel names and coupling-specific addresses 	
Synchronizing transmitters and receivers	Before transmitters and receivers can transfer data, they must first identify- and synchronize with one another:	
	 Identification is realized via the data configured at the connections CTS and AT, AR or US. 	
	Synchronization is only possible,	
	 if a transmitter identifies its partner as receiver (or vice versa). 	
	 if the length of the reserved data areas coincide. 	
	 if the net data structure is compatible. 	
	 if the data transfer mode is identical (data entry at the MOD input 	

for transmitters/receivers).

If one of these conditions is not fulfilled, then the synchronizing transmitter/receiver logs-off with a communications error.

3.1.4.3 Compatible net data structures

General The net data structures include information regarding the structure of the net data to be transferred:

• data regarding the position and data types of the associated net data

The net data of the transmitter and receiver must be structured the same to permit data transfer between the transmitter and receiver.

Data types The following standardized data types are used:

Standardized data type	SIMADYN D data type	Length in bytes
Integer 16	Integer	2
Integer 32	Double Integer	4
Unsigned 8	Bool, Byte	1
Unsigned 16	Word	2
Unsigned 32	Double Word	4
Floating Point	Real, SDTIME	4
Octet-String	-	1
Time and Date	-	6

Table 3-15 Standardized data types

NOTE

The SIMADYN D connection types (e. g. SDTIME) are not used as data types, as the coupling partner does not always have to be a SIMADYN D function block.

Octet string

An octet string is an unstructured data type which does not appear at the block I/O (refer to the Chapter Channel marshalling blocks CCC4 and CDC4).

• Time and date

Data type for the time which does not appear at the block I/O (refer to communications utility, message system).

Value range

 Ist octet and 2nd octet: Specify the date relative to 1.1.1984. Resolution=1 day 0 days≤d≤65535 days
3rd octet to 6th octet: Specify the time between 00:00 and 24:00. Resolution = 1ms 0 ms≤x≤86400000 ms The first 4 bits are not assigned in the sixth octet

Fig. 3-7 Time and date

3.1.4.4 Number of coupling modules in a subrack

Overview The number of CS coupling modules (CSH11, CS12/13/14, CS22 and CS7) are restricted by two system limits:

- subrack size The largest subrack in the SIMADYN D system has 24 slots. As a subrack must have at least one CPU, theoretically, 23 slots remain.
- available address space In practice, these limits are seldomly reached. For CS modules, the Land C bus each have 1 Mbyte address space.

Assigned address
spaceThe individual CS modules always occupy a constant address space on
the backplane bus.

Example

CS7 always occupies 64 Kbyte on the L bus, independent of how many modules are configured.

Module type	Backplane bus	Occupied address space
CS12/13/14, CS22	C bus	128 Kbyte
CSH11	C bus	64 Kbyte
CS7	L bus	64 Kbyte

Table 3-16Occupied address space

3.1.4.5 Reorganizing a data interface

General A data interface can be re-formatted without having to interrupt the RUN condition or diminish performance.

Formatting the data interface	Several central coupling blocks have a CDV connection (Bool. data type). If there is a positive edge at the CDV input, the central coupling block inhibits the coupling, and after approx. 10 seconds, formats the data interface. The data interface is then enabled again.	
	During this inhibit time and while the data interface is being re-formatted, all transmitters/receivers go into a wait condition. After enabling, channels log-on (register) and synchronize just the same as when the system runs- up.	
Example	The subrack coupling is an application. Here, data areas can be reserved which are not used.	
	• If individual subracks with a CS22 module are shutdown, and the number of transmitters or receivers is reduced due to a configuring change, the "earlier" reserved data areas on the CS12/13/14 are kept.	
	• For communications between CS22-CS22, the CS12/13/14 subracks are only used as data interface, not as coupling- or communications partner. The unused data areas are eliminated by re-organizing the CS12/13/14.	

3.2 Couplings on the subrack

Overview These couplings include:

- local CPU coupling
- communications buffer coupling
- coupling to EP3 modules

3.2.1 Local CPU coupling

- **General** The local CPU coupling does not require a coupling module. This coupling type can only be used by function blocks, which are located on the same CPU as the data interface. The data interface always lies on that CPU and is 16 kbyte.
- Application The coupling is mainly used for autonomous tasks (e. g. a closed-loop control) to provide defined interfaces. Thus, when configuring a project, it is simple if a CPU is "overloaded" to shift the complete task to another CPU without involving extensive configuring work. Communications can, for example, then be realized via the data interface in the buffer. Only the data at the CTS connection has to be changed at all communication function blocks.
- Initialization and monitoring The @CPN central blocks cyclically initialize and monitor the coupling. Thus, at the start of cyclic operation, the coupling is not enabled for all senders/receivers, but only after a delay of several operating cycles. The @CPN central block monitors the coupling after the coupling has been enabled.
- **Configuring** A @CPN central coupling block must be configured to initialize and monitor the coupling.

For the local CPU coupling, only the channel name has to be specified at the AT, AR or US connections of the send/receive blocks. Data for address stages 1 and 2 should not be configured. Transmitters and receivers with the same channel names communicate with one another.

3.2.2 Communications buffer coupling

General The 16 kbyte data interface for the communications buffer coupling is located on a communications buffer.

The hardware consists of modules MM11, MM3 or MM4.

Fig. 3-8 Communications buffer coupling

3.2.3	Coupling to EP3 modules
	For the communications buffer coupling, only the channel name has to be specified at the AT-, AR- or US connections of the transmit/receive blocks. Address stages 1 and 2 do not have to be configured. Transmitters and receivers with the same channel names communicate with one another.
Configuring	The communications buffer coupling can only be used by send/receive blocks which are configured on the same subrack.
	The @CMM central block cyclically initializes and monitors the coupling. Therefore, the coupling is not enabled for all transmit/receive blocks at the start of cyclic operation but only after a delay of several operating cycles. The @CMM central block monitors the coupling after the coupling has been enabled.
Initialization a monitoring	and A @CMM central block must be configured on any CPU of the subrack to initialize and monitor the coupling.
Application	The communications buffer coupling is used to transfer data between various CPUs of a subrack. Contrary to \$ signals, higher quantities of data are transferred more effectively.

General The coupling to EP3 modules is handled just like any other coupling. The data interface is located on the EP3 module (this module is not configured/parameterized with D7-SYS). The data interface is 16 kbyte.

_			
	CPU	Data transfer via the backplane bus	EP3 DPR

Fig. 3-9 Coupling to EP3 modules

Monitoring and initialization

A central block @CEP must be configured on any of the CPUs of a subrack to initialize and monitor the coupling.

The @CEP central blocks cyclically initialize and monitor the coupling. The coupling is therefore not enabled at the start of cyclic operation for all transmitters/receivers, but only after a delay of several operating cycles. After the coupling has been enabled, the @CEP central block monitors the coupling.

NOTE	Only communication utility process data can be configured.	
Configuring	• For the coupling to EP3 modules, only the channel name has to be specified at the AT- and AR I/O of the transmit/receive blocks. Address stages 1 and 2 do not have to be configured.	
	 For channel names, the EP3 modules only evaluate the 5th and 6th character of the channel name. All other characters can be selected 	

as required.

3.3 Subrack coupling

General A maximum of 9 SIMADYN D subracks with C-bus connection can be coupled with a fiber-optic cable subrack coupling.

The hardware uses CS12, CS13, CS14 and CS22 modules

The subrack which accommodates the CS12, CS13 or CS14 modules will be designated as the master subrack in the following.

The subrack in which the CS22 module is inserted, will be designated as the slave subrack.

Initialization and
monitoringOne central block @CS1 or @CS2 must be configured on any CPU in
each subrack for coupling initialization and coupling monitoring.

Fig. 3-10 Maximum configuration with CS14

Fig. 3-11 Point-to-point coupling with CS12

Fig. 3-12 Configuration for four slaves with CS13

3.3.1 Hardware structure

• Only subracks with C-bus connection can be coupled with one another (e. g. SR24).

- The master subrack, has, depending on the number of slaves to be connected, a CS12-, CS13 or a CS14 module. The slave subracks have a CS22 module.
- A subrack can accommodate several CS12/CS13/CS14/CS22 modules. Thus, several different subrack couplings can be configured in a subrack. The CS12/CS13/CS14/CS22 modules of a subrack coupling must all be configured in different subracks.

3.3.2 Scope of supply

Overview All of the slave subracks are permanently coupled to the master subrack, as a slave subrack must continuously access the memory in the master subrack.

- The master/slave subracks can be powered-up in any sequence.
- All subracks can be powered-down and up again in continuous operation.
- If a slave subrack is powered-down and up again, then communications between the other nodes (master and a maximum of seven slaves) is not influenced.
- Slave subracks which are powered-down can be re-configured and powered-up again. The number of transmitters and receivers can also be changed (e. g. if one transmitter too little was configured).
- As soon as the slave partner, which was powered-down, is poweredup again, a new connection is established between the new partner which has been powered-up again and all other partners. This is also valid for slave-slave communications, i. e. if the CS12-, CS13- or CS14 module is only used as data transfer area and not as communications partner. Slave-slave communications are interrupted when the master subrack is powered-down.
- **NOTE** It is not permissible to remove the fiber-optic cable during operation as this can result in a CPU crash.

3.3.3 Response when "shutting down" a coupling partner

Response of the master	The master subrack is shutdown:	
subrack	The @CS2 central block can no longer access the master subrack and prepares a restart (in addition, the CDM block output is set to "faulted", refer to @CS2 mask). The system then waits until the master subrack is powered-up.	

All slave transmit/receive blocks can no longer access the master subrack and start a new channel log-on.

Response of the slave	The slave subrack is shutdown:		
subrack	The @CS1 central block and the maximum seven additional @CS2 central blocks decrement their particular NCP connection (i. e. the number of active slave subracks is reduced by one). Otherwise, there is no response, and the NCP connections are incremented again after the appropriate slave subrack runs-up again. All of the configured transmit/receive blocks, whose coupling partner is located on the subrack which is shutdown, wait until the subrack has run- up again.		

3.3.4 Response when "powering-up" the master subrack

Response If the master subrack is powered-up again while the slave subracks are operational, it can be assumed, that for a short period of time, increased computation time will be required to establish the connection for CPUs to communicate via the subrack coupling. For already highly utilized CPUs, this can result in an 'E' being displayed at the 7-segment display (error in the task administrator).

3.3.4.1 Acknowledging

The 'E' can be acknowledged in two ways:

ManualWhen manually acknowledging, after the connection has been
established, the 'E' can be acknowledged by depressing the red
acknowledge button on the CPU.

Automatic acknowledgement For automatic acknowledgement, the following must be configured on all CPUs in the slave subrack which communicate via the subrack coupling. Automatic acknowledgement can be implemented in two different ways using this particular configuration:

- All YEV outputs, of the function blocks communicating via the subrack coupling are monitored using a software which has to be configured. If the value of all YEV outputs is less than 9 (i. e. initialization has been completed), then the input NOT.I is set to '1'. Using the CDM output of the @CS2 central block, it is ensured that the system is only automatically acknowledged if the master subrack has actually been powered-up. Using the time limit (input T at PCL), automatic acknowledgement has to be realized within a certain time. The 'E' on the 7-segment display is now automatically acknowledged using the SYF4 function block.
- 2. If not all of the YEV outputs can be monitored or should be monitored, input OR.I2 should be set to "1" and input NOT.I should not be connected at all. In this case, the CPU is only acknowledged within the time, set at connection T of the PCL after the master subrack has been powered-up (output of @CS2.CDM).

Fig. 3-13 Automatic acknowledgement of 'E'

3.3.5 Restart frequency

Synchronizing
transmitters and
receiversAn additional important communications feature for external
communication interfaces is the restart frequency of
transmitters/receivers. Transmitters/receivers always re-locate their old
channel and re-synchronize with them.Subracks can be powered-up and down again in any sequence. The
transmitters/receivers of the subracks, in which the CS22 is inserted,
synchronize themselves to the previous channelsat each restart (new
run-up).If a transmitter/receiver identifies the "right" channel at log-on, then it
cannot identify

- if it had previously used this channel before.
- whether this channel is presently being used by another transmitter/receiver (or transmitter or receiver).

3.3.6 Configuring

Rules	• For a fiber-optic cable subrack coupling, all of the CS22 modules must have different names. If names have been assigned twice, then the appropriate central blocks log-off with multiple configuring (FB disable).	
	 All CS22 modules and the CS12-, CS13- or CS14 modules of a subrack must be inserted in different subracks. 	
	 The sampling time range, 32 ms≤TA≤256 ms, valid for central coupling blocks, is also valid for the subrack coupling central blocks @CS1 and @CS2. It should also be observed that the @CS2 central blocks may only be configured, as maximum, in twice the sampling time as the @CS1 central block. The actual sampling time (in milliseconds) is decisive and not the cyclic task (T1, T2 etc.) 	
	 Example: If the @CS1 central block was configured in 100ms, the @CS2 central blocks can be configured in a sampling time up to 200ms (180ms, 150ms, 130ms, 50ms etc. are thus permitted). 	
Data interface	The data interface is located on the dual port RAM of the CS12-, CS13- or CS14 module. The available data transfer area is 128 kbytes.	
Initialization and monitoring	The coupling initialization and monitoring is handled by the @CS1 and @CS2 central blocks in the RUN status. Thus, the coupling is not enabled at the start of cyclic operation for all transmit/receive blocks, but is delayed by several sampling cycles. The coupling is always first enabled in the master subrack and then in the slave subracks.	
	After the coupling has been enabled, central blocks @CS1 and @CS2 monitor the coupling. In this case, the number of active coupling partners is output at the central block outputs.	
Names at the AT- and AR inputs	For the subrack coupling, only the channel name has to be specified at the AT- and AR inputs of the transmit/receive blocks. Names should not be configured for address stages 1 and 2. Transmitters and receivers with the same channel names communicate with one another.	

3.4 Industrial Ethernet coupling (SINEC H1)

Overview	There are three versions for communications via SINEC H1:
	• Layer 2 The data are directly transferred via the Ethernet defined in the SINEC H1 protocol stack. The transfer is without physical connection and without any handshaking (acknowledgement). The communication partners are known as transmitters and receivers. data is packed in telegrams and transmitted or received. All SIMADYN D communication utilities can communicate via SINEC H1 in this way.
	• Layer 4 The data are transferred via the ISO Transport Layer, defined in the SINEC H1 protocol stack. The data transfer requires a physical connection and handshaking (acknowledgement). The communication partners are designated as transmitter and receiver. Data is packed into telegrams and transmitted or received. All SIMADYN D communication utilities can communicate via SINEC H1 in this way.
	• Layer 7 (STF), STF=SINEC technological functions The data to be transferred are defined as variable (object) and are processed with STF utilities "Read variable", "Write variable". For STF utilities, there is always a client and a server. The server defines the variable and responds to utility requests; the client issues the utility requests. SIMADYN D communication utilities "Process data" and "Message system" can communicate via SINEC H1 in these ways.
NOTE	When using layer 4 or layer 7:
	To configure the bus of the CSH11 coupling module (with integrated CP1470) the NML configuring tool is required, Order No. 6GK 1740-0AB00-0BA0!
Requirements of the bus nodes	Each bus node requires the following to allow it to operate on the bus:Ethernet address
	 is assigned when configuring in the CFC.
	 Application associations (layer 7) and data transfer connections (layer 4 and layer 7)
	 defined routes to transfer data between the bus nodes, which are configured using NML.
	 Variables (layer 7) and telegrams (layer 2 and layer 4)
	 for SIMADYN D - are assigned when configuring in CFC.

Terminology for SINEC H1

• STF (SINEC technological functions)

is the definition of SINEC H1 layer 7, defined in the "SINEC AP 1.0 Specification" from Siemens. The variable utilities used for SIMADYN D which are in conformance with MMS, are part of STF.

Client

The client issues the task to an STF utility and initiates communications.

• Server

The server accepts an STF utility and is the responding party in the communications. The server defines objects, which a client can access using STF utilities.

• Variable

A variable is a basic or complex object for a server. The client can access the variables using STF variable utilities.

• Read variable

With this STF utility, a client reads the value of a variable at a server. The client sends the task "Read variable X"; the server sends, as response, the value of the variables.

• Write variable

Using this STF utility, a client changes the value of a variable at a server. The client sends the task "Write variable X" together with the new values to the server; the server acknowledges this.

Data transport connection

The data transport connection is a defined communications path between two bus nodes at OSI layer 4. A data transport connection must be configured using NML. It must be configured so that it coincides for both bus nodes. When the bus nodes run up, the data transport connections are first established and only after that is data transfer possible.

Application association

The application association is a defined communications path between two bus nodes at OSI layer 7 (STF). An application relationship must be configured using NML. It must be configured so it coincides for both bus nodes. Application associations are based on a data transport connection.

3.4.1 Hardware and central coupling block

3.4.1.1 Hardware

Requirements The following hardware is required for a SINEC H1 coupling:

- Subrack with C-bus connection
- CPU

• CSH11 communications module (this must also be configured in HWConfig)

The data transfer area (dual port RAM) between the CPU and CSH11 is 64 kbytes.

CSH11 LEDs The red and green LEDs on the front panel of the CSH11 provide information regarding the status of the module:

green	red	Significance	
dark	dark	Temporary intermediate status (CSH11 waits approx. 3 min. until the SIMADYN D has run-up) or the module has no power supply	
lit	dark	Database and synchronization with SIMADYN D o.k.	
flashin g	dark	Database inconsistent; correct the NML software!	
dark	lit	Not synchronized with SIMADYN D; (possible causes: A @CSH11 has not been configured, incorrect slot or incompatible firmware)	
dark	flashin g	Hardware fault	
flashin g	lit	Switch in the STOP or ADMIN setting	

Table 3-17 LEDs on the front panel of the CSH11

ADMIN- and RESET switches on CSH11

The ADMIN switch on the CSH11 has three settings:

RUN

All of the data transfer connections have been established and data is being transferred.

• STOP

Data transport connections have been established but there is no data transfer. The SIMADYN D blocks indicate that data transfer has been temporarily interrupted (e. g. at output YTS). The green LED flashes and the red LED is lit.

 ADM This is the same status as STOP; it is possible to reset the CSH11 using the RESET switch.

Using the ADMIN- and RESET switch, the database, loaded and saved in the non-volatile memory using NML, can be de-activated:

- 1. Set the ADMIN switch into the ADM setting
- 2. Depress RESET
- 3. Wait 30 seconds
- 4. Set the ADMIN switch into the RUN position

The module now runs with the minimum configuring; system operation is still not possible. After an additional reset, the module runs again with the database in the non-volatile memory. ECO

3.4.1.2 Central coupling block @CSH11

Initialization A @CSH11 function block must be configured to initialize the CSH11.

Information at input MAA is a SINEC H1 input. The station address for the CSH11 is specified at this initialization input. The name comprises of precisely 12 characters. All hexadecimal characters are permitted. Example: '080006010001'

Information at
outputs ECL andAlarms and faults/errors are displayed at the ECL outputs (error class)
and ECO (error code) of the central coupling block.

ECL	ECO	Explanation
0 (alarm)	0	o.k.
	1	Station address erroneous
	2	Station address does not match the database
	5	Coupling type incorrect
	6	No database or database incomplete
	7	CSH11 in the STOP condition
> 0 (error)	Any	Irreparable error; red LED flashes. Note the error class and -code and contact Siemens AG.

Table 3-18 Information at the outputs ECL and ECO

NOTE If ECO = 6 a

If ECO = 6 and simultaneously the green LED on the CSH11 is lit (the database is consistent), then the NML software should be corrected as follows:

• "CSH1 SINEC TF00" must be selected under the NML menu item import FVT ("System FVT00" is not required).

Under the NML menu item **application associations > FVT assignment**, the available (standard) application associations must be assigned to FVT "CSH1 SINEC TF00".

3.4.2 Communications via SINEC H1 layer 2

NOTE An NML configuring tool is not required when using layer 2!

General When establishing communications via SINEC H1 layer 2, the address connections AT and AR are configured as follows.

Data entries at address connections AT, AR

When establishing communications via layer 2, the channel name and address stage 1 must always be specified at the address connection. When transmitting, address stage 2 must be specified. When receiving, address stage 2 information is optional.

Special features when entering data at address connection AT, AR when using SINEC H1 layer 2:

Please enter in the following sequence: "Channel name.address stage 1.address stage 2"

Channel name

- maximum 8 characters
- ASCII characters except "Point" and @
- the channel name at a data interface must be unique.
- the channel name does not have a specific significance for SINEC H1 layer 2.
- Enter "." after the channel name
- Address stage 1: "#2-II"
 - #2-Reserved ID when using SINEC H1 layer 2.
 - II
 Local Link Service Access Point (LLSAP). The LLSAP consists of two hexadecimal numbers and must be divisible by four.
 00 and 08 are not permitted.
 Each LLSAP can be simultaneously used bidirectionally i. e. transmitting and receiving. Either one AT (transmit channel) and AR connection (receive channel) can use the same LLSAP or one

US connection (transmit and receive channel).

- Enter "." after address stage 1
- Address stage 2: "Station address-rr"
 - must be available when transmitting and for bidirectional channels (US connection). When receiving, the entry is optional.
 - station address
 Specify the station address (twelve hexadecimal numbers) of the communications partner.
 - -The hyphen must be specified to separate the station address and RLSAP.
 - rr

Remote Link Service Access Point (RLSAP). The RLSAP consists of two hexadecimal numbers, and must be divisible by four. 00 and 08 are not permitted.

NOTE	• If address stage 2 is configured for the receiver, then only telegrams from the thus specified communications partner are accepted.
	 If address stage 2 is not configured for the receiver, then all telegrams, specified by address stage 1, are accepted at the LLSAP ("open" LLSAP).
Examples for data	• AT- 'Send.#2-44.0800060100AA-12'
entries at the address connection	 transmits to partner with station address 0800060100AA, at its LLSAP 12, via LLSAP 44
	• AR- 'Empf.#2-44.0800060100AA-12'
	 receives via the same route, as for the example for AT
	• AR- 'Empf2.#2-48'
	 receives via an open LLSAP 48
	• US- 'Service.#2-20.080006010002-20'
	 receives and transmits via LLSAP 20
	In the example, the LLSAP 44 is simultaneously used from a transmitter and a receiver, i. e. bidirectional.
NOTE	• When transferring data, it should be observed that the lengths for the transmitters and receivers communicating with one another coincide. Otherwise data transfer is "transparent", i. e. the CSH11 transfers all data unchecked.
	 Word (2 bytes) and double word(4 bytes) quantities are transferred in the Little-Endian format, i. e. the least significant byte at the beginning and then the most significant byte. When communicating with devices which deposit data in the Big-Endian format, then the user must adapt appropriately (e. g. for SIMADYN D using the SWB conversion blocks).

3.4.3 Communications via SINEC H1 layer 4

NOTEThe data transfer connections must be configured using the NML
configuring tool.Additional information
on the NML configuring tool, refer to the User documentation
"SINEC NML - CP141x, CP1470".

General When communicating via SINEC H1 layer 4, the address connections AT and AR are configured as follows.

Data entries at address connections AT, AR, US For layer 4 communications, the channel name and address stage 1 must always be specified at the address connection. Address stage 2 is not used.

Special features for data entries at the address connections AT, AR, US when using SINEC H1 layer 4:

Input sequence: "Channel name.address stage 1"

Channel name

- max. 8 characters
- ASCII characters except "Point" and @
- the channel name at a data interface must be unique.
- the channel name does not have a specific significance for SINEC H1 layer 4.
- Enter "." after the channel name
- Address stage 1: "#4data transport connection name"
 - #4
 - Reserved ID when using SINEC H1 layer 4.
 - data transport connection name
 - Max. 12 characters.

The symbolic name refers to a data transport connection configured with NML. The data transport connection name is the only assignment between the SIMADYN D software and the NML software.

Each data transport connection can be bidirectional, i. e. transmitting and receiving can be simultaneously used. Either one AT (transmit channel) and AR connector (receive channel) or precisely one US connector (transmit and receive channel) can refer to a data transport connection.

- AT- 'Send.#4TRAVERB1'
 - transmits via a data transport connection "TRAVERB1"
- AR- 'Empf.#4TRAVERB1'
 - receives via a data transport connection "TRAVERB1"
- US- 'Service.#4TRAVERB2'
 - receives and transmits via "TRAVERB2"

In the example, the data transport connection "TRAVERB1" is simultaneously used by a transmitter and a receiver, i. e. bidirectional.

Examples for entries at the address connection

transmitters and receivers communicating with one another coincide. Otherwise data transfer is "transparent", i. e. the CSH11 transfers all data unchecked.
• Word (2 bytes) and double word(4 bytes) quantities are transferred in the Little-Endian format, i. e. the least significant byte at the beginning and then the most significant byte. When communicating with devices which deposit data in the Big-Endian format, then the user must adapt appropriately (e. g. for SIMADYN D using the SWB conversion blocks).

3.4.4 Communications via SINEC H1 layer 7 (STF)

General	Communications via SINEC H1 layer 7 is configured at address connections AT and AR.	
NOTE	 The application associations are configured using the NML configuring tool. Further information on the configuring tool NML, refer to the User documentation "SINEC NML - CP141x, CP1470". 	
	 When accessing defined complex STF variables (arrays, structures) defined in SIMADYN D, it is only permissible to access complete variables; partial access is not possible! 	

3.4.4.1 Address connections

Data entries at address	Special features when making data entries at address connections AT and AR when using SINEC H1 layer 7 (STF):
AR	Input sequence: "Channel name.address stage 1. address stage 2"

Channel name

- max. 8 characters
- ASCII characters with the exception of "Point" and @
- the channel name on a data interface must be unique.
- the channel name does not have a specific significance for SINEC H1 layer 7.
- If address stage 1 and address stage 2 are not specified, then SIMADYN D is a server as far as the associated STF utility is concerned and defines a local variable. The channel name is part of the associated variable name.
- Enter "." after the channel name
- Address stage 1
 - can only be used in conjunction with address stage 2.
 - max. 14 characters.
 - if address stage 1 and 2 are used, SIMADYN D is a client as far as the associated STF utility is concerned.
 - address stage 1 is interpreted as symbolic name of the application association, via which the STF utility is handled. Application associations are configured with SINEC NML; they define the communication paths between the applications. The application association name is the only assignment between the SIMADYN D software and the NML software.

• Address stage 2

- max. 20 characters.
- address stage 2 is the remote variable name for the communications partner (server).
- **STF variable name** If SIMADYN D is a server regarding an STF utility, then SIMADYN D defines a variable. The variable name has the following structure:

"Channelnamesubracknamepd"

Channel name

Channel name as configured at AT, AR, US (refer to the Chapter Connections of the communication blocks). It is precisely 8 characters long. If the configured channel name is shorter, then it is made up to 8 characters using "_".

• Subrack name

Name of the subrack in which the SIMADYN D utility is configured. It is precisely 6 characters long. If the configured name is shorter, then it is made up to 6 characters using "_".

.

p Number of the CPU on which the SIMADYN D utility is configured. Possible values: 1...8

- d Identification code for a SIMADYN D utility. This utility sets-up an object. Possible values:
 - P: For process data
 - M: For the message system
- **NOTE** Using the STF utility "Interrogate name list", a client which has been removed can interrogate a list of the configured SIMADYN D utilities. The client receives information about the structure of the objects and how these objects are to be handled.

3.4.4.2 Communications utility, process data

General Process data is transferred via SINEC H1 layer 7 (STF) by reading and writing data. SIMADYN D can be both a server as well as a client (CFC configuring). Process data have an open structure as far as SINEC H1 is concerned.

• The channel name is specified at connection AR of the receive block. SIMADYN D as server

- The channel name is specified at connection AT of the transmit block. A remote client can execute the STF utility "Read" on this variable.
- The SIMADYN D utility ID at the end of the variable name is "P".

Address examples:

- Subrack "BGT1", CPU No. 3, function block CRV is to be configured:
 AR- 'PZDWRITE'
 - thus, the following variable name is obtained: PZDWRITEBGT1__3P
 - the variable can be written into.
- Subrack "BGT3", CPU No. 7, function block CTV is to be configured:
 AT- 'PZDREAD'
 - thus the following variable name is obtained: PZDREAD_BGT3__7P
 - the variable can be read.
- The channel name, address stage 1 and address stage 2 are specified at connection AT of the transmit block. SIMADYN D executes the STF utility "Write" on the remote variable.

- The channel name, address stage 1 and address stage 2 are specified at connection AR of the receive block. SIMADYN D executes the STF utility "Read" on the remote variable.
- The addressed variable must be defined for the communications partner.

Address examples:

- 1. Entry at function block CTV:
 - AT: "PZD1.APPLBEZ1.PZDEMPF"
 - SIMADYN D writes into the remote variable, with the name "PZDEMPF" via the application association "APPLBEZ1".
- 2. Entry at function block CRV:
 - AR: "PZD2.APPLBEZ2.PZDREAD_BGT3_7P"
 - SIMADYN D reads the remote variable, with the name "PZDREAD_BGT3__7P" via the application association "APPLBEZ2".
- STF variable
structuresThe structure of the process data objects is derived from the CFC
configuring of the "virtual connections" (refer to the Chapter
Communications utility, process data).

The SIMADYN D data types are converted into STF data types using the following table:

SIMADYN D data type	STF data type
Integer	Integer16
Double Integer	Integer32
Bool, Byte	Unsigned8
Word	Unsigned16
Double Word	Unsigned32
Real, SDTIME	Floating-Point

Table 3-19 Converting SIMADYN D data types into STF data types

- If precisely one connection is assigned for each transmit/receive block, then a basic STF variable is defined.
- If several connections, with the same STF data type, are assigned to each transmit/receive block, then an "Array" data type is defined. The number of array elements precisely corresponds to the number of connections.
- If several connections with different STF data types are assigned to each transmit/receive block, then a "Structure" data type is defined. The number of structure elements precisely corresponds to the number of connections.

Combination of arrays and structures (nesting level > 1) is not possible for SIMADYN D CSH11.

NOTE The variable structure, expected from the client must coincide with that defined for the server.

3.4.4.3 Communications utility, message system

General Messages are transferred via SINEC H1 layer 7 (STF) by reading and writing data. SIMADYN D can act as both server and client (CFC configuring). Messages have a structure which is open as far as SINEC H1 is concerned.

STF utility with • SIMADYN D as server

- The channel name is specified at connection AT of the message output block MSI.
- A remote client can execute the STF utility "Read" on this variable.
- The SIMADYN D utility ID at the end of the variable name is "M".
- The communications partner must read the object at specific intervals using the STF utility "Read". If a message was output via a message output block, the "Read" utility will positively respond and return this message, otherwise the response is negative.

Address example

- The configuring is to be in subrack "BGT1", CPU No. 3, function block MSI:
 - AT- 'MELD'
 - the following variable name is obtained: MELD____BGT1__3M
 - the variable can be read.

STF utility with SIMADYN D as server

- The channel name, address stage 1 and address stage 2 are specified at connection AT of the message output block.
- The addressed variable must be defined at the communications partner.
- SIMADYN D executes the STF utility "Write" on the remote variable.
- SIMADYN D writes into the remote variable each time that the message output block outputs a message.

Address example:

- Entry at function block MSI:
 - AT: "MELD.CHEF.EINGANGSKORB"

- SIMADYN D writes into the remote variable, with the name "EINGANGSKORB" via the application association "CHEF".
- **STF variable structure** The STF structure of the variables is derived when CFC is used to configure the message output block MSI; and more specifically from the data entries at connections SNV, STM, SSF (refer to the Chapter, communications utility, message system). Message variables always have a complex "Structure" data type.

NOTE	The STC connection at message output block MSI must be set to "1".

SSF=1 (standardized format)			
	Contents	Message structure	STF structure
	Spontaneous ID	Unsigned8	Unsigned8
	Sequence number	Unsigned8	Unsigned8
	Message type description	1 Octet	Octet-String 2
	Message type	1 Octet	
Only available,	Prefix	Floating-Point	Floating-Point
if SNV=1	Suffix	Floating-Point	Floating-Point
	Measured value	Floating-Point	Floating-Point
	Measured value dimension text	8 characters	Visible-String 32 (if STM=0); Visible-String 92 (if STM=1)
	Message instant	24 characters	
Only available, if STM=1	Message text	60 characters	

Table 3-20Message structure for SSF=1

SSF=0 (hexadecimal format)			
	Contents	Message structure	FMS structure
	Spontaneous ID	Unsigned8	Unsigned8
	Sequence number	Unsigned8	Unsigned8
	Message type description	1 Octet	Octet-String 2
	Message type	1 Octet	
Only available,	Prefix	Unsigned16	Unsigned16
if SNV=1	Suffix	Unsigned16	Unsigned16
	Measured value normalization factor	Unsigned32	Unsigned32
	Measured value	4 Octets	Octet-String 6
	Measured value connector type	2 Octets	

SSF=0 (hexadecimal format)			
	Measured value dimension text	8 characters	Visible-String 8
	Message instant	Time and Date	Time-Of-Day (6 bytes)
Only available, if STM=1	Message text	60 characters	Visible-String 60

Table 3-21Message structure for SSF=0

NOTE The variable structure, expected from the client must coincide with that defined for the server.

3.4.5 System time

SIMADYN D system time The CSH11 can be used as source for the SIMADYN D system time. The prerequisite is a SINEC time transmitter. The RTCM function block must be configured to distribute the time.

Further information

on the function block RTCM, refer to the user documentation "SIMADYN D, function block library".

3.4.6 Data quantities, sampling times

		Max. number / max. data quantity / sampling time
Nu co	umber of SIMADYN D channels (low amount of net data) with MM4 mmunications buffer module	Approx. 400
Nu co	umber of SIMADYN D channels (2048 bytes net data) with MM4 mmunications buffer module	29
Cł	nannel length (net data)	2048 bytes
Νι	umber of data transfer connections	46
•	A maximum of 46 per transmitter and per receiver from SIMADYN D can use layer 4 of the CSH11.	(CP1470 characteristics)
Fa	stest layer 4 sampling time (up to max. 512 bytes)	10 ms
•	If, for example, 15 transmitters are configured, then the transmitters should be configured in a sampling time greater than $15 \times 10 \text{ ms} = 150 \text{ ms}$. The sampling time of the receiver should be shorter, as, when communicating via layer 4, the initiative always comes from the transmitter.	
•	Receivers should be configured in a shorter sampling time than the associated transmitter (in the "Handshake" mode). If the transmitter and receiver are configured in the same sampling time and with the "Handshake" mode, then connections are automatically and continuously interrupted. Explanation: As the transmitter and receiver are not synchronized via SINEC H1, sometimes CP1470 can receive data at the receiver side but the associated SIMADYN D receive channel was still not read-out. In such a situation, CP1470 interrupts the connection (with the intention to flag the transmitter that the data was not able to be sent to the receiver; layer 4 does	

	Max. number / max. data quantity / sampling time
not have any other acknowledge mechanism (handshake mechanism)!).	

Table 3-22Data quantities, sampling times

3.4.7 NML network management

GeneralThe configuring tool NML is required to configure the data transport
connections and application associations, Order No. 6GK 1740-0AB00-
0BA0.

Further information

on the NML configuring tool, refer to the user documentation "SINEC NML - CP141x, CP1470".

- When configuring for layer 2 or layer 4, the "CSH11_E4_2000" profile should be used. If this is not available for the NML version supplied, then please contact Siemens AG who will then provide you with it.
 - profiles to be imported: "Mgt-Tbez.", "e4_handshake"
 - function distribution table to be imported: "CSH1 SINECTF00".
 - For layer 4 operation, data transport (data transfer) connections must be configured. The "e4_handshake" is recommended as profile.
 - Both layer 2 as well as also layer 4 operation must be assigned to the existing (standard) application associations of FVT "CSH1 SINEC TF00", under the menu item "Application associations" "FVT assignment"..

3.5 **PROFIBUS DP coupling**

Additionally required hardware	The following hardware and software are additionally required to configure and run the PROFIBUS DP coupling:
and software	COM PROFIBUS Order No. 6ES5 895-6SE12
	 SS52load SS52load is included in COM PROFIBUS from V3.1.
	 DP-capable PC card to download the COM database via COM PROFIBUS
Characteristics	SIMADYN D has the following characteristics on PROFIBUS DP:
	• Master The SS52 communications module can be operated on PROFIBUS both alone (stand alone) and with other masters in multi-master operation.
	• Slave In addition to the master functionality, there is also the slave functionality. Both of these functionalities can be used simultaneously or separately.
	• Shared input Each slave connected to PROFIBUS DP is assigned just one master (the parameterizing master) and at first can only communicate with this master. Additional masters can read the slave input data using the "Shared input". SIMADYN D supports this functionality as master and slave.
	 SYNC and FREEZE The outputs/inputs of several slaves can be read/written in synchronism using the SYNC and FREEZE utilities. SIMADYN D supports these utilities as master.
	• Data lengths A maximum of 244 bytes can be transferred in each direction and for each slave.
	Data transfer times

For short telegrams (up to 32 byte), only the SIMADYN D sampling time and the DP bus circulating time are included in the data transfer time. For longer telegrams, the software processing times of the SS52 communications module must also be included (max. 5 ms).

Consistency

Data within a telegram is always consistent.

Fig. 3-14 Multi-master system with slave functionality (1) and shared input (2)

3.5.1 Configuring with D7-SYS

Function blocks The following function blocks must be configured for a PROFIBUS DP coupling:

- A central coupling block @CSPRO
- A maximum of one transmitter- and receiver function block per slave station
- Maximum of one synchronizing function block SYNPRO can be configured
- A maximum of one diagnostics function block DIAL2A can be configured

Communications The following communication utilities are permitted: **utility**

- Process data
 - · Parameter processing of variable-speed drives

Data transfer mode Permitted data transfer mode:

- Refresh
- For receivers, optionally also multiple

3.5.1.1 Central coupling block

Baud rate andThe baud rate and PROFIBUS address are specified, on one hand byPROFIBUS addressCFC (function block @CSPRO) and on the other hand by COM

PROFIBUS.

The following must be observed regarding the validity of these two parameters:

- If a COM database has still not been loaded, then
 - the parameters specified by CFC are valid.
 - the SS52 communications module waits for a COM database to be downloaded.
- If a COM database is loaded and the baud rate and PROFIBUS address are the same as those configured with the CFC, then
 - the COM database is activated.
 - communications module SS52 starts with net data transfer.
- If a COM database is loaded, but the baud rate or PROFIBUS address does not coincide with that configured in CFC, then
 - the parameters specified by CFC are valid.
 - the module waits for download. (the existing COM database can also be activated, by correcting the baud rate and PROFIBUS address at the central block of the COM configuring.)

3.5.1.2 Address connections AT, AR

Entries at address Special features when making data entries at address connection AT, AR when using PROFIBUS DP:

Input sequence: "Channelname.Adressstage1.Addressstage 2"

- Channel name
 - max. 8 characters
 - ASCII characters except "Point" and @
 - channel names of all transmit- and receive blocks, which access the same SS52 communications module must be different (exception for the "Multiple" data transfer mode).
 - the channel name has no special significance for PROFIBUS DP.
- Input "." after the channel name
- Address stage 1:
 - the slave PROFIBUS address is specified as address stage 1.
 - the slave PROFIBUS address may only assigned once for each transmit- and receive channel.
 - value range: 0, 3 123

- 0: means that this channel itself is used as slave channel and can be addressed from another master.
- 3...123: addressing external slaves.
- Enter "." after address stage 1
- Address stage 2:
 - consists of a maximum of 2 characters.
 - 1st character: Byte order

"1": Standard PROFIBUS setting The data are transferred in the "Motorola format" (most significant byte before the least significant byte).

"0": Exception setting The data are transferred in the "Intel format" (least significant byte before the most significant byte). This setting can be used for communication partners whose internal data administration uses the Intel format (e. g. SIMADYN D).

 2nd character: Optional, only receiver "R":

The access is realized as second master which reads data. "R" can only be entered for receive channels. ("Shared input")

If a 2nd character is not specified, then the slave can be accessed as parameterizing master.

- Examples for entries at the address connection
- AT- 'Setpoint.25.1'
 - the channel with the name setpoint transmits data to a slave with the PROFIBUS address 25.
- AR- 'RECEIVE.117.0'
 - the channel with the RECEIVE name receives data from a slave with PROFIBUS address 117. As an exception, data are transferred in the Intel format.
- AR- 'Input.33.1R'
 - the channel with the name **input** receives data from a **slave** with PROFIBUS address **33** as **(second) master which reads data**.
- AT- 'Slavelst.0.1'
 - the channel with the name slavelst transmits data as slave to a DP master.

3.5.1.3 SYNC/FREEZE commands

General

The SYNC and FREEZE commands synchronize the inputs and outputs of a group of slaves. The SYNPRO function block initiates these commands and supports the consistency checking process.

Consistency The configuring engineer is responsible in guaranteeing that data is consistent. For the SYNC/FREEZE command, this involves consistency of data via all of the slaves involved. It goes without saying that the consistency of the input or output data of a slave is always guaranteed.

SYNC After initiating a SYNC command, the DP master (SS52) waits for one DP bus circulating time, so that all of the slaves have received the new output values. The DP master then sends a SYNC broadcast telegram to the configured slave group. All slaves of this group then simultaneously update their buffered outputs.

FREEZEEnsuring data consistency:
When configuring, it must be ensured that during a DP bus circulating
time, after a SYNC command has been initiated, that the SIMADYN D
CPUs do not change the data.

After initiating a FREEZE command, the DP master immediately transmits a FREEZE broadcast telegram to the configured slave group. All of the slaves of this group then simultaneously read their inputs and buffer them. This input data is then available for the SIMADYN D CPUs after a DP bus circulating time has expired.

Ensuring data consistency: By suitably configuring, it should be ensured that during a DP bus circulating time, after the FREEZE command has been initiated, that the input data are not evaluated by the DP master.

3.5.1.4 Configuring versions of SYNC/FREEZE

General The terminology involved with securing data consistency are explained and various configuring versions of SYNC/FREEZE are illustrated.

 Bus circulating time Cycle, in which the DP master (SS52) addresses all of the slaves once. In multi-master systems, all of the masters poll their slaves. The bus circulating time is configured using COM PROFIBUS using the baud rate, number and type of the slaves, and is computed by COM PROFIBUS. It can be read-out there using the menu command Bus parameters, as "Typical data cycle time".
 Sampling time This is the cycle in which the SYNPRO function block and the transmit- and receive function blocks (on SIMADYN D CPUs) are calculated. The sampling time is configured using CFC.

NOTE Bus circulating time and sampling time are independent of one another.

	 Synccycle Synccycle is a multiple integer of the sampling time. It can be configured at input CNX of function block SYNPRO. (Synccycle=CNX x sampling time). A Synccycle always starts with a sampling time. A synchronizing command is always initiated by the SYNPRO function block in the system mode at the start of a sampling time.
Configuring	Configuring version 1 corresponds to most of the applications:
	Generating SYNC commands.
	The data consistency over all slaves is guaranteed.
	• The Synccycle is at least twice as long as the sampling time (CNX>1).
	 the length of the transmit telegrams (outputs) for each slave may not be greater than 32 bytes.
	 all transmit blocks and the SYNPRO function block must be configured in the same sampling time.
	 the SYNPRO function block must be configured before all of the transmit blocks (sequence of execution).
	 output SOK of function block SYNPRO must be connected with the enable inputs of all transmit blocks (belonging to a slave group).
	 the bus circulating time must be shorter than the Synccycle minus 1 x sampling time. When operational, it should be checked as to whether the SOK output goes to "1" once in each Synccycle, otherwise the Synccycle should be increased.
	Example:
	• Synccycle=3 x sampling time
	 Bus circulating time=2 x sampling time
	Assumption: The SYNPRO function block calculates at the center of

the sampling time (before all transmit blocks)

Fig. 3-15 Timing diagram, SYNC version 1

Configuring

version 2

When initiating the SYNC command, the transmit blocks are inhibited (SOK=0) for two sampling times (one bus circulating time). The transmit blocks are enabled in the third sampling time after initiating the SYNC command (SOK=1).

Configuring version 2 has the highest SYNC performance:

- Generating SYNC commands.
- The data consistency over all slaves is guaranteed.
- Synccycle=sampling time (CNX=1)
 - the length of the transmit telegrams (outputs) for each slave may not be greater than 32 bytes.
 - all transmit blocks and the SYNPRO function block must be configured in the same sampling time.
 - high baud rate (>1.5 Mbaud). For lower baud rates, the time conditions can hardly be maintained.
 - the bus circulating time may only be a maximum of 50 % of the sampling time.
 - the bus circulating time must also be so low, that one sampling time expires from the start up to the calculation of the function block SYNPRO. This cannot be guaranteed, but must be checked when the system is operational.

Example:

- Synccycle=sampling time
- Bus circulating time=0,3 x sampling time
- Assumption: The SYNPRO function block calculates at the center of the sampling time (before all transmit blocks)

Fig. 3-16 Timing diagram, SYNC version 2

Normally, the transmit blocks are always enabled (SOK=1). If, due to time fluctuations, the SYNPRO function block is calculated before SYNC has expired (to the right in the diagram), the transmit data are not updated, but the values from the previous sampling time are transferred. The Synccycle and the data consistency are not influenced.

Instructions to achieve good SYNC functionality:

In addition to a low Synccycle, it is also necessary to have the lowest amount of jitter (time-based fluctuations) in the Synccycle. The following measures support this:

- Irregular data transfer along the DP bus should be prevented: Singlemaster operation; stations must not be temporarily switched-in.
- Alarm tasks should not be configured on the same SIMADYN D CPU. Sampling time overruns are not permissible; this would result in a SYNC command failure or a shift by a complete sampling time.
- Configure a high baud rate and short telegram lengths (the time to poll a slave is included in the jitter.).
- Configure the SYNPRO function block and all associated transmit blocks in T1=T0 (basic sampling time). The SYNC command is always initiated with the basic clock cycle interrupt. It is received with more accuracy (timing accuracy) as an interrupt, initiated in the system mode.

ConfiguringConfiguring version 1 (3) is for generally less frequently used applications
of FREEZE:

- Generating SYNC and FREEZE or only FREEZE commands.
- The data consistency over all slaves is guaranteed.
- The Synccycle is at least 300 % longer than the sampling time (CNX>1).
 - the length of the transmit- or receive telegram (inputs or outputs) may not exceed 32 bytes per slave.
 - all transmit- and receive blocks and the SYNPRO function blocks must be configured in the same sampling time (on the same CPU).
 - the SYNPRO function block is configured as the last function block in the processing sequence.
 - output SOK of function block SYNPRO should be connected with the enable inputs of all (belonging to the slave group) transmit- and receive blocks.
- The bus circulating time must be less than the Synccycle minus 2 x the sampling time. When the system is operational, it should be checked whether the SOK output goes to "1" once per Synccycle; otherwise the Synccycle should be increased.

Example:

- Synccycle=4 x sampling time
- Bus circulating time=2 x sampling time
- Assumption: The SYNPRO function block calculates at the center of the sampling time (after all of the receive- and transmit blocks)

Fig. 3-17 Timing diagram SYNC version 3

After the SYNC command has been initiated, the transmit- and receive blocks are inhibited for three sampling times (one bus circulating time + one sampling time) (SOK=0). The transmit- and receive blocks are enabled in the fourth sampling time after the SYNC command has been initiated (SOK=1).

3.5.1.5 Diagnostics function block

GeneralMaster- or slave-specific diagnostic information can be output from
PROFIBUS DP using the DIAPRO function block.

The diagnostic data to be output are selected using input SEL. It is output at D01 to D08.

Further information

on the diagnostic data, refer to the User Documentation "COM PROFIBUS" or in the User Documentation for the individual slaves.

Overview, diagnostic data

SEL=0: No diagnostic data

• The block does not output any valid diagnostic data.

SEL=126: System diagnostics

• The system diagnostics provides an overview as to which slave has provided diagnostic data.

- The 8 words are bit-coded.
- Each bit is assigned a slave with its PROFIBUS address corresponding to the following table.
- If the bit for the associated slave is set, then the slave has provided diagnostics data.

Output	Bit 16	Bit 15	Bit 14	 Bit 5	Bit 4	Bit 3	Bit 2	Bit 1
D01	15	14	13	 4	3	(2)	(1)	(0)
D02	31	30	29	20	19	18	17	16
D07	111	110	109	100	99	98	97	96
D08	-	-	(125)	 116	115	114	113	112

Table 3-23 Assigning system diagnostics/data transfer list to the slave PROFIBUS address

SEL=127: Data transfer list

- The data transfer list provides an overview of the slaves which were involved with data transfer within a configured time (COM PROFIBUS).
- The 8 words are bit-coded as for the system diagnostics.
- If the bit for the assigned slave is set, then data is being transferred.

SEL=128: Master status

• Outputs information specific to the master (for users, the low byte of D01 is relevant; the significance of the other outputs has been documented, but hasn't been explained in any more detail):

Out	put	Significance				
D01	low byte	Status of the DP master: Stop (40h), Clear (80h), Operate (C0h)				
	high byte	Ident No. SS52 (high byte)=80h				
D02	low	Ident No. SS52 (low byte)=37h				
	high	(irrelevant)				
D03D08						

Table 3-24Information specific to the master

SEL=3 ... 123: Slave diagnostics

- Output of slave diagnostics data.
- The SEL data entry corresponds to the slave PROFIBUS address.
- The diagnostics data is dependent on the slave type.
- The first 16-byte slave diagnostic data are output.
- Additional slave diagnostic data can be output with SEL>1000.

Further information

on slave-specific diagnostics data, refer to the user documentation "COM PROFIBUS" and the User Documentation for the individual PROFIBUS slaves.

Diagnostics data of SIEMENS DP slaves

Slave type		SPC slaves, general	ET 200U	ET 200B	ET 200K	SPM slave	ET 200C 8DE/8DA	DP stand. slaves	
Conn	ection								
D01	low		Status 1						Diagnostics
	high		Status 2					according to the standard	
D02	low			Sta	atus 3				6 bytes
	high		Ν	laster PRO	FIBUS add	ress			
D03	low		lde	ntification n	umber, hig	h byte			
	high	Identification number, low byte							
D04	low		Header, device-related diagnostics						
	high	Device diagr	nostics U	Device diagnos. B	0	0	0		
D05	low	Header ident related diag	ification- 0 0 0 0 0 nostics						
	high	BG 7-	0	0	0 Channel 7-0				
D06	low	BG 15	-8	0	Channel 15-8 0		Device-		
	high	BG 23-	-16 0 Channel 23-16 0		specific				
D07	low	BG 31-	-24 0 Channel 31-24 0		diagnostics				
	high	Additional device-	Irrelevant						
D08	low	specific	Irrelevant						
	high	diagnostics	Irrelevant						

 Table 3-25
 Overview of the structure of the diagnostics data for Siemens DP slaves

Bits, status 1, 2 and 3

	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1
Status 1 (D01 low byte)	S: Slave was para- meterized from another master	S: Last parameter telegram was erroneous	M: Erroneous slave response	S: Reques- ted func- tion is not supported	S: Diagnos- tics entry in the specific diagnos- tics area	S: Config. data dont match	S: Slave still not ready for data transfer	M: Slave cannot be addressed on the bus
Status 2 (D01 high byte)	M: Slave entered as "not active"	(not used)	S: Slave has received a Sync command	S: Slave has received the Freeze command	S: Response moni- toring activated	S: 1 (fixed)	S: Diagnos- tic data must be retrieved	S: Parameteri zation and configuring required
Status 3 (D02 low byte)	S/M: Not all dia- gnostics data can be trans- ferred	-	-	-	-	-	-	-

Table 3-26 Significance of the individual bits, status 1, 2 and 3

- M: Master identifies diagnostics data
- S: Slave identifies diagnostics data

Master PROFIBUS address

PROFIBUS address of the master which had parameterized this slave.

If this slave is not parameterized, then FFh is used.

Identification number

 High/low byte: This identifies the slave type.

All additional diagnostic data are slave-specific.

Generally (standard DP slave) the diagnostic blocks follow: Devicerelated, identification-related and channel-related diagnostics. Not all slave-specific diagnostic blocks must be available.

Each block is preceded by a header byte. The diagnostics block is identified by bit 7 and bit 8:

Bit 7, 8 of the header byte	Significance
Bit 7, 8= 00	Device-related diagnostics
Bit 7, 8= 01	Identification-related diagnostics
Bit 7, 8= 10	Channel-related diagnostics

Table 3-27 Significance of bit 7 and bit 8 of the header byte

Bits 1 to 6 define the following:

- For device- and identification-related diagnostics the length of the diagnostic block including the header byte, value range 2...63.
- For channel-related diagnostics, the identification number, value range 0...63.

Output of additional slave diagnostics data

 Diagnostic bytes 17 to 32 of a slave are output with SEL=1002 to SEL=1123.

3.5.2 Configuring with COM PROFIBUS

- General COM PROFIBUS (Windows) should be used when configuring (it is also possible to use the earlier COM ET200 Version 2.1 for configuring). Using COM PROFIBUS you can define:
 - The number and configuration of the nodes connected to the PROFIBUS DP bus system
 - The baud rate
 - Important parameters when using the PROFIBUS DP bus system

SIMADYN D-specific information on COM PROFIBUS:

- Configure the SS52 communications module as SIMADYN D SS52 station type ("SIMADYN" family).
- The input and output addresses should not be specified.
- After completing the configuring, the database is downloaded into SS52 via the DP bus using the menu command File > Export > DP master.
- Alternatively, it is also possible to download via RS232. The following menu command is used to start loading the SS52: File > Export > SIMADYN Master.

3.5.2.1 Harmonizing with data configured in CFC

Rules The configured software should be harmonized with one another as follows:

	• The baud rate and the actual PROFIBUS address must be the same.
	• The slaves, configured in COM must each have, in the receive- and transmit directions, a CRV/CTV function block configured in the CFC. This is assigned via the PROFIBUS address (address stage 1 at the address connection).
	The length of the input- (receive-) and output- (transmit-) data per slave must coincide.
Error- and alarm information	The rules (syntax) are checked. Error- or alarm information is issued if these rules (syntax) are not observed:
	 Communications error field (flashing "C" on the CPU module), or output YTS at function block CRV/CTV
	Output ECO at function block @CSPRO
NOTE	The following rules /syntax) are not checked: The net data structure of the communication partners must be the same.
	If this is not observed, the data could be incorrectly interpreted (e. g. bytes could be interchanged within a data word) between the communication partners.
Net data structure	For SIMADYN D, the net data structure with CFC is specified by configuring the virtual connections (refer to the Chapter Communications utility, process data).
	• For most of the PROFIBUS slaves, the net data structure is specified using COM PROFIBUS by entering identification codes in the "Configuring" window.
3.5.2.2 SS5	2 as PROFIBUS slave
Configuring	The SS52 communications module can be configured as pure slave or combined as master and slave:
	• SS52 as pure slave does not require COM to be configured: Input SLA should be set to 1 or 2 at function block @CSPRO. A function block CRV and/or CTV should then be configured next to it. The address stage 1 at connection AR/AT should be set to "0".

 SS52 combined as master and slave Input SLA at function block @CSPRO should be set to "0" (default value).

- The bus is configured using COM PROFIBUS. A database ("master system") is created for each PROFIBUS master. This is used to download the particular master.
- If the master is configured using another tool, when configuring the SS52 slave, a fictitious master must be configured in COM PROFIBUS. It should be ensured that the bus parameters are correctly set: It is recommended to increase the number of active stations and the token rotation time in both configuring tools.

3.5.2.3 Loading the database

Versions There are two ways to load the database:

Loading via PROFIBUS DP

- Loading via PROFIBUS DP is the version which is the more user friendly.
 However, certain restrictions must be observed.
- A DP-capable PC card is required (currently available cards can be requested from the product support)
- The driver for the PC card is installed together with COM PROFIBUS. Loading is realized in COM PROFIBUS using the menu command File > Export > DP master.

Loading via RS232

- Using the "SS52LOAD" program, a database, generated from the COM PROFIBUS is loaded as binary file into the SS52 module via the RS232 interface.
- SS52LOAD is integrated in COM PROFIBUS (from Version 3.1).
- Restriction: If the Sync function block SYNPRO is configured, then the synchronous mode must be disabled (enable input EN=0), so that the download functions.
- The binary file (*.2bf) is generated in COM PROFIBUS using the menu command File > Export > Binary file.
- Loading is realized with SS52LOAD with the menu command **File > Download**.
- The RS232 interface is located together with the PROFIBUS interface on the 9-pin connector of the SS52 module. The customer must assemble his own cable to establish the connection to the COM port of the PC.

RS232 assignment at SS52 (no standard):

- 2 TxD
- 7 RxD

	CAUTION	There is a danger of interchanging connections for the RS232
		assignment.

3.5.3 Start-up/diagnostics

3.5.3.1 LEDs

Yellow LED Contrary to the other communication modules, for the SS52 communications module, the yellow LED does not directly indicate the bus activity.

Green LED The green LED provides general information about the SS52 communications module and about synchronization with function block @CSPRO from SIMADYN D. The yellow LED provides information about the DP bus and the COM database.

LED	Green	Yellow
Dark	CPU not running	No bus operation (during run-up).
Flashes	Fatal error	Bus error (e. g. short circuit)
quickly (every 0.2 s)	 Remedy: Read-out the error class and - code at function block @CSPRO and inform Siemens AG. 	 Remedy: Check the cable and the other bus nodes.
Flashes (every 1 s)	Wait and synchronize to the SIMADYN D- CPU	COM database not available or not activated (also during download)
	 Remedy: Check the configuring of function block @CSPRO. 	Remedy: Load the database.
Flashes slowly (every 2 s)	-	CFC- and COM configuring do not match 100%. Only restricted bus operation is possible
		 Remedy: Adapt the CFC- and COM configuring so that they match.
Steady	Communications module SS52 and synchronization to SIMADYN D CPUs OK.	Bus operation with activated COM database OK.

 Table 3-28
 Significance of the LEDs of the SS52 communication module

Behavior at run-up

- After power-on, both diodes are briefly lit and then go dark again.
- Only the green LED is lit during the run-up time (approx. 5 seconds).
- When the system is OK, the yellow LED is lit after the run-up time has expired.
- After a reset, both LEDs initially stay in the last condition until the software again controls the LEDs.

Characteristics a download	• During download, the yellow LED flashes (this is extremely short at high baud rates).
	• After this, the behavior is the same as for run-up.
	The LEDs do not provide information as to whether all of the slaves are available at the bus and have been correctly parameterized. If data transfer with a slave is not OK, then this is flagged at the associated function block (YEV=0x0002 or YTS=0x6014) using a "break" ID. Information regarding the current status of individual slaves is obtained using the diagnostics function block DIAPRO.
3.5.3.2	Error class (ECL) and error code (ECO)

- **Outputs ECL, ECO** Significance of the outputs ECL, ECO at function block @CSPRO:
 - Error class=0: An alarm is present. In some cases this alarm can be removed without a SIMADYN D reset. If there are several alarms, then the alarm of the lowest number is displayed.
 - Error class>0: An error is present. Function block @CSPRO issues a communications error (flashing "C" on the CPU module). After the error has been removed, the SIMADYN D subrack must be reset.

Error class	Error code	Significance
0 (alarm)	0	О.К.
	1	COM database present, but not activated as the baud rate and the PROFIBUS address with connections BDR and MAA do not match.
		• Remedy: Harmonize the baud rate and PROFIBUS address in the CFC and COM configuring.
	2	No COM database available.
		Remedy: Load the database.
	3	The COM database is presently being downloaded with subsequent start-up.
	4	The channels to DP nodes, configured with CFC, which are configured in the COM database, are missing. This status can also temporarily occur after a SIMADYN D run-up. The DP nodes are not addressed.
		Remedy: Harmonize the CFC- and COM configuring.
	5	(not used)
	6	There is at least one channel configured with CFC which does not match the COM database. The associated SIMADYN D FB has issued a communications error (flashing "C").
		Remedy: Harmonize the CFC- and COM configuring.
	7	There is at least one channel configured with CFC, which essentially does not match the COM database. The associated SIMADYN D-FB has issued a communications error (flashing "C").
		Correct the CFC configuring.
	8	Resource bottleneck. Not all of the CFC channels are processed.
		Remedy: Reduce the CFC configuring (communication channels).
	9	There are two channels, which wish to transmit data to the same slave or receive data from it. The SIMADYN D-FB which is associated with the channel which addressed the slave later, has issued a communications error (flashing "C").
		Remedy: Correct the CFC configuring.
	10	Bus operation temporarily faulted.
		Remedy: Check the cable and bus nodes.
>1 (internal error)	(any)	Remedy: Note the error class and error code and inform Siemens AG.

Table 3-29

Significance of the error class and error code

3.5.3.3 Application example, PROFIBUS DP coupling

General

The application example describes a typical configuration consisting of:

- SIMOVERT 6SE70
- ET200U
- ET200B
- SIMATIC S5

It is assumed that you are knowledgeable about configuring SIMADYN D as well as the CFC configuring language.

NOTE Only those activities are described in detail which are of significance for this particular configuration. Versions or additional components are touched-on but not discussed in detail. In the text, these positions are identified with the symbol located on the right.

The following subjects are discussed in this application example:

- **Typical configuration** Description of a typical configuration for SIMADYN D connected to PROFIBUS DP with the associated system requirements.
- Configuring under CFC Grouping of the PROFIBUS DP specific blocks and their configuring in the typical configuration.
- Configuring the SS52... communications module Configuring the SS52 communication module using the COM PROFIBUS 3.0 parameterizing software and the download tool "SS52load".

3.5.3.4 Typical configuration and system requirements

General The following systems and devices are selected as typical configuration, whereby the specified PROFIBUS addresses were randomly defined:

Fig. 3-18 Typical configuration

Communications partner

The SIMADYN D communication partners (station 4) are as follows:

- SIMATIC S5-105U (station 1) as master to SIMADYN D: The SS52 has a master (S5) which polls the SIMADYN D. Data transfer (quantity and amount of process data) between the two controls can be freely configured. The following was defined:
 - S5 ⇒ SIMADYN D: Three words (input/output), one word (input), one byte (input), one byte (input)
 - SIMADYN D ⇒ S5: Three words (input/output), one word (output), one byte (output)
 - SIMOVERT MASTER DRIVE with CB1 (station 71) as slave: Five defined PPO types are available for data transfer with this node. PPO: Parameter process data object structure of the net data for variable-speed drives. There is net data, which either consists of parameter ID values (PKW) and process data (PZD) (PPO types 1,2,5) or only process data (PPO types 3,4). In this configuring example, PPO type 3 is configured. In this case, two words (control word and main setpoint) are transmitted and two words (status word and main actual value) received.

• ET 200 B (station 51) as slave:

When using this slave type, a precise type must be selected which then automatically defines data transfer. For 8DI/8DO types, one byte is output and one byte is read-in.

• ET 200 U (station 11) as slave:

For this ET 200 U configuration (three digital output modules and a digital input module) three bytes are output and one byte is read-in.

3.5.3.5 Check list of the required hardware and software components for SIMADYN D

Fig. 3-19 Hardware and software components for SIMADYN D

L	ea	e	n	d
	99	-		~

1	SIMADYN D unit consisting of at least:
	Subrack, CPU, program memory sub-module, communications module CS 7 and communications sub-module SS52
2	CFC configuring device:
	PC with Windows 95/NT as operating system, STEP 7 software, option package D7-SYS and PCMCIA drive
3	PC to operate "COM PROFIBUS" and "SS52load" (this can be the same PC as for CFC), with:
	3.5" floppy disk drive, one serial interface, Windows 3.1x or Windows 95 operating system
4	"COM PROFIBUS 3.0" parameterizing software:
	Software to generate the PROFIBUS DP bus configuration
5	Download software "SS52load":
	Software to transfer the DP configuration generated with "COM PROFIBUS" to SS52 via the COM port (RS 232) of a PC.
6	RS232 line:
	Connection between the SS52 (in the 9-pin connector of the SS52, in addition to the RS485 of the Profibus, there is also an RS232: 2-TxD; 7-RxD) and a PC COM port (RS232). This cable must be assembled according to the specifications (refer to Chapter Downloading the COM database onto the SS52) as the RS232 of the SS52 is not standard!
	If data is downloaded via the bus (RS 485), using a communications processor CP 5411 (additional plug-in card in the PC), then the "SS52load" tool and the RS232 line are not used. However, the CP 5411 is not included in this documentation.
Supp	lementary literature (for emergency situations and additional applications!):
7	User Documentation SIMADYN D
8	Manual on the COM PROFIBUS parameterizing software
9	Manuals of the other nodes: SIMATIC S5, ET 200U, ET 200B, SIMOVERT Master Drives

Table 3-30 Legend, hardware and software components for SIMADYN D

3.5.3.6 Configuring under STEP 7 CFC

General

In order to simplify unified configuring of a "PROFIBUS DP coupling" under CFC, the bus-specific CFC blocks are now grouped together and the relevant syntax explained.

When configuring an SS52 communications sub-module under CFC, the following should be observed:

• Precisely one central block @CSPRO must be used for each SS52 communications sub-module

- A maximum of one transmitter- and/or one receiver block per communications partner
- Permitted communication utilities:
 - process data
 - parameter processing of variable-speed drives
- Permitted data transfer mode: Refresh (for receivers, also multiple)
- A maximum of one synchronization function block SYNPRO per SS52 communications module
- A maximum of one diagnostics function block DIAPRO per SS52 communication module

Function blocks

Central block PROFIBUS DP coupling @CSPRO

Fig. 3-20 Central block, PROFIBUS DP coupling @CSPRO

• Use

This function block initializes and monitors the PROFIBUS DP coupling (CS7 with SS52). It may only be configured in a sampling time of 32 ms \leq TA \leq 255 ms.

• I/O

ECL, ECO, CDM, QTS and YTS are service- and diagnostics I/O which are generally used for SIMADYN D start-up (commissioning). They are not used for configuring.

Further information

on the I/O of the central block PROFIBUS DP coupling @CSPRO, refer to the User Documentation "SIMADYN D, function block library".

CTS	The configured name of the CS7 module (identical with the entry in the master program, actual: D04) and the designation of the CS7 slot where the SS52 is located (X01, X02 or X03, actual: X02) is specified at this initialization input.
MAA	Just like all of the other bus nodes, the SS52 module has a station address. This must be specified at this connector (a number between 1 and 123, actual: 4).
BDR	The baud rate, which the SS52 uses on the bus, is set using this connector. This value must be specified in a code:
	0=9,6 kbaud ; 1=19,2 kbaud ; 2=93,75 kbaud ; 3=187,5 kbaud ; 4=500 kbaud ;
	5=1,5 Mbaud ; 6=3 Mbaud ; 7=6 Mbaud ; 8=12 Mbaud ; (actual: 5).
SLA	Initialization input, only for slave functionality: 0: SS52 operates as PROFIBUS master and/or slave. A COM PROFIBUS database must be loaded. 1 or 2: SS52 operates as pure PROFIBUS slave without COM PROFIBUS database 1: Slave with either inputs or outputs, 2: Slave with inputs and outputs (actual: 0)
LCC	Initialization input for the time in which the SS52 module monitors the SIMADYN D host CPU: <0: No monitoring 010: Monitoring time=1s (default) >10: Monitoring time in 1/10 s (actual: 0)

 Table 3-31
 I/O of the central PROFIBUS DP coupling block

3.5.3.7 Using transmit- and receive blocks

General The function blocks of the communications utility, process data must be configured for PROFIBUS DP.

The address connections AT and AR of those blocks, which access the SS52 data interface, must have the following syntax (rules):

AT/AR- 'Channelname.Addressstage1.Adressstage2'

Channel name

- Must be unique, corresponding to the general communication rules (the channel names of all transmit- and receive blocks, which access the same SS52 communications module, must be different)
- It may consist of a maximum of 8 characters
- It has no special significance for PROFIBUS DP

Address stage 1

- The PROFIBUS address of the communication partner is specified in this address stage.
- Using address 0, this channel goes to the slave and is called-up by other bus masters.
- External slaves can be addressed using addresses 3..123.

• A PROFIBUS address may only be used once for each transmit/receive channel.

Address stage 2

This address stage is configured with one or two characters:

- **1st character:** Defines the byte order to transfer word quantities for various communication partners.
 - 1=Motorola format (high byte before the low byte) Thus, it corresponds to the telegram structure of the PROFIBUS standard, and should be used as standard, especially when transferring single word quantities to standard bus nodes (analog I/O, SIMOVERT, SIMATIC etc.)
 - 2=Intel format (low byte before the high byte)
 Can be used for data transfer to devices where data is processed according to the Intel format just like in SIMADYN D (e. g. second SS52)

Coupling partner	1st character
SIMOVERT Master Drives with CB 1 (standardized bus nodes)	1
ET200 distributed periphery (standardized bus nodes)	1
SIMATIC (IM 308 C,) (standardized bus nodes)	1
SIMOREG 6RA24	1
MICRO / MIDI Master (standardized bus nodes)	1
SIMADYN D (SS52) (the coupling partner must also have the same setting)	0

Table 3-32Byte order for various communication partners

• **2nd character** (optional, only for receivers): When an "R" is entered at a receive channel, the SS52 is authorized to read other slaves (shared input).

3.5.3.8 Configuring the typical configuration in CFC

In this case, it does not just involve process data processing, but mainly in implementing the listed communication paths to the other bus nodes.

A CFC chart with explanations shows how to configure the PROFIBUS DP. The CFC chart does not purport to include all details.

The following are to be configured:

- CPU PM5 in slot S01 under the name D01_P1:
- Communications module CS7 at slot S02, designation D02
- Communication sub-module SS52 (D042) on CS7 connector X01

General

Fig. 3-21 CFC chart (Part 1) of the typical configuration

Fig. 3-22 CFC chart (Part 2) of the typical configuration

3.5.3.9 Configuring the SS52 communications module with COM PROFIBUS

General

If the SS52 communications module is inserted at one of the three slots of the CS7 (currently: X01) and was configured, then values are transferred between the transmit- or receive blocks and the bus connector on the SS52 communications module. As SIMADYN D is a freely-configurable system, the following logical communication structures must be assigned:

- Bus parameters defined (baud rate, ...)
- The communication associations between the nodes defined (who communicates with whom, and in which function?)
- The communication objects must be defined (communication objects are useful (net) data. For SIMADYN D they consist of the process- and device data. However, for the typical configuration, communications only involves the process data.)

This data (in the following, designated as COM database) is saved on the SS52 in a permanently integrated memory and are changed and adapted by downloading via the 9-pin sub-D connector of the module.

3.5.3.10 Generating the COM database with COM PROFIBUS

Procedure Master and slaves of a bus structure are configured using a graphic user interface and a list of communication partners which are supported.

At the start, all communication associations of the typical configuration are defined by selecting the nodes involved.

Parameterizing the 1st host system

 After the program start, the first master system is set-up using the menu command File > New.
 Master-host selection

<u>B</u> us Adr:	Master station type	Host- station type	
1 • 2 • 3 •	IM 308-C S5-95U DP / Master IM180 Master 505-CP5434-DP	S5-115U/H / CPU 942B S5-115U / CPU 943A S5-115U / CPU 943B S5-115U / CPU 944A	OK Cancel
5 6 7	SIMADYN D SS52 CP 5412 (A2) SOFTNET-DP	S5-115U / CPU 944B S5-115U / CPU 945 S5-135U / CPU 922	<u>H</u> elp
8 9 10 11 ▼	Master: 6ES5 308-3 Host: 6ES5 945-3	3UC11 7UA.1]

Fig. 3-23 Dialog box, "Master-host selection"

 After buffering the data (File > Save under...) using any name (current: "Typical"), a first host system is generated with the name "Mastersystem <1>". The code number (current: 1) is identical with the selected PROFIBUS address. This first step defines who has the "say" on this host system.

i 🛱 Cl	DM PROFIBUS		
File	Edit Configure Service Documentation Window Help)	
20	verview - master systems - MUSTER.ET2		X
Mas	ster 1 m Master system <1>	Slaves X	
	📴 DP master system PROFIBUS address 1	L3	- 🗆 🗡
	Bus name : PROFIBUS	ET 200	
	Host name : S5-115U / CPU 945 Host system <1>	SIMATIC	- 1
	Station type : IM 308-C PROFIBUS address: 1 Station name: Master system <1>	DRIVES SWITCHGR: MMI AS-I NC IDENT Others	

Fig. 3-24 Window "DP master system PROFIBUS address 1"

3. After selecting the button "ET200" in the "Slaves" menu, the mouse pointer points to an empty box with an arrow upwards.

This allows slaves to be assigned to the S5 station, by positioning the mouse pointer under the station symbol and then clicking on the mouse.

4. After interrogating the PROFIBUS address (current: 4) the communications partner can be selected in an additional selection window.

Fig. 3-25 "PROFIBUS address" window

The majority of the setting possibilities in the "Slave characteristics" window are of now significance for the typical configuration. The standard settings can be used. Only the family (current: SIMADYN), the station type (current: "SS52 master/slave") and the "Configuring..." button are important.

🖴 Slave properties						
Family:		Station type	Order No:			
ET 200X	+	SS52 Master/Slave	6DD1688-0AE2			
SIMATIC						
DRIVES						
SIMOVERT						
SIMOREG						
SIMADYN						
SWITCHGR:	+	<u> </u>				
Name:						

Fig. 3-26 Dialog box, "Slave characteristics"

6. However before configuring starts, the specified settings must be acknowledged with OK in a dialog box "Master-host selection".

Bus Adr:	Master-station type	Host-station type	
4	IM 308 C S5-95U DP / Master IM180 Master 505-CP5434-DP SIMADYN D SS52 CP5412 (A2) SOFTNET DP	I SIMADYN D	OK Cancel Help
	Master: SS52: 6DD16 Host: 6DD16	88-0AE2	

Fig. 3-27 Dialog box, "Master-host selection"

7. The bus node is now actually configured. For the SS52 communications module, this configuration window is at first completely empty. The net data structures must now be entered in the list in the dialog box "Configuring: SIMADYN D slave ...".

NOTE S5 is the master in this "Master system <1>" so that the transmit- and receive mode must be considered from its perspective (I/O addresses of the S5).

Configu	ring: SIMADYN D s	lave #4 <>			X
	ID	Comments	E-addr.	A-addr. 🔺	ок
0	114	3 words input/output			Canaal
1	1AI	1 word input			Calicei
2	1A0	1 word output			Order No
3	8DI	1 byte input			oradi no.
4	8D0	1 byte output			ID
5	8DI	1 byte input			Data
6					Reserve
7					Auto addr.
8					Delote
9					Delete
10					Addr. space
11					<u>P</u> aram
12					
13					Help

Fig. 3-28 Dialog box, "Configuring: SIMADYN D slave ..."

8. All of the data types are entered in the "ID" column. In this case, the associated dialog box must be activated. You can achieve this by either double clicking on a cell, or after highlighting the cell, depressing the "ID" button.

The following parameters can now be specified:

- Туре ٠ Select between:
 - input, output
 - input/output
 - empty location
 - special format
- Length
- 1 to 16
- Format •

Select either single-word- or byte format

I)		×
	-		OK
	Type:	imputs/outputs	Cancel
	Length:	3	
	<u>F</u> ormat :	Word 💌	Help
	🗆 Module d	consistency	
	Associated	ID 114	

Fig. 3-29 Dialog box, "ID"

9. After terminating the dialog with OK, the appropriate ID is entered in the list. The sequence of the process data in the telegram is defined by the position at which the ID is entered in the input or output address ranges (fields with a grey background are not taken into account). Entries into the comments column are optional and can be freely configured. The address settings ("I-Adr." and "O-Adr.") are not required for the SIMADYN D database. Thus, the first host system has been generated in which the SIMADYN D is slave to the S5. Parameterization has now been completed. It should be observed, that this involves the configuring data for the IM308 (S5); therefore these no longer have to be processed, as they are not relevant for the SS52.

2 0	verview -	- master :	systems - muster.et2	
Mas	ster 1	m	Master system <1>	Host system <1>
Mas	ster 4	S	Master system <4>	Host system <2>
	📰 nn	maata	r guntom BBOEIBUS, address 4	
11	E DP	maste		
		Bus	name : PROFIBUS	–
		Host	name:S5-115U / CPU 945 Host system <1>	
			Station type : IM 308-C	
	[]-[]	ā	PROFIBUS address: 1	
	61-12		Station name master system <1>	
			Station type : SIMADYN D Slave	
			PROFIBUS address: 4	
			Station name:	
				•
-				

Fig. 3-30 Window, "DP master system PROFIBUS address 1"

Parameterization of the 2nd host systems

1. The first host system is closed by double clicking on "Master 4" and the second host system is made accessible so that the SS52 master can be parameterized.

Master 1 m Mastersystem <1> Hostsystem <1> Master 4 s Mastersystem <4> Hostsystem <2> Image: DP master system PROFIBUS address 4 Image: DP master system PROFIBUS address 4 Image: DP master system PROFIBUS address 4 Bus name : PROFIBUS Hostsystem <2> Image: DP master system PROFIBUS address 4 Image: DP master system PROFIBUS address 4 Host name : SIMADYN D Hostsystem <2> Image: DP master system <2>	<u>- 🗆 ×</u>
Master 4 Mastersystem <4> Hostsystem <2> Draves Image: DP master system PROFIBUS address 4 Image: DP master system PROFIBUS	
Image: DP master system PROFIBUS address 4 Image: DP master system PROFIBUS Bus name : PROFIBUS Image: SIMADYN D Host name : SIMADYN D Hostsystem <2>	
Station type : SIMADYN D SS52 PROFIBUS address: 4 Station name master system <4> MM AS N IDE	200 ATIC /ES CHGR II -1 C NT ers

Fig. 3-31 Dialog box, "Overview, master systems"

 By double clicking on the symbol "SIMADYN D" it can be seen how important it is to first set-up the SS52 as slave in the "Host system <1>". The complete telegram structure is automatically transferred into the SS52 configuration with the difference that the telegrams lie interchanged in the address ranges: The output of S5 becomes the input for SIMADYN D and vice-versa.

The data identification (by configuring...) now has a grey background and, for this communication, can no longer be changed from the present host system (identification and comment belong to the S5). The data are acknowledged with "OK". Thus, communications to the S5 have been set-up.

Config	guring: SIM/	AD'IN Dislave #4 O				X
	ID	Comments	E addr.	A addr.		ок I
n	114	3 words input/output				
1	1AI	1 word input				Cancel
2	1AO	1 word output				Auto addr.
3	BDI	1 byte input				Dalata
4	חח ס מח	1 byte output				Delete
- 5 -	BDI	1 byte input				Addr. space
6						
7						neih
8						
y					•	

Fig. 3-32 Dialog box, "Configuring: SIMADYN D slave"

- 3. The master functions of SS52 can be configured. To realize this, you must return to the DP master system window, PROFIBUS address 4. After the slave menu has been re-activated (the mouse pointer changes), ET 200 U, ET 200 B and SIMOVERT Master Drive are coupled one after the other. Each time a component is called-up, you are prompted for the PROFIBUS address. The "Slave characteristics" window then automatically opens, in which, as already described, the necessary settings can be made using **Configuring...**.
- 4. As the field devices are pure slaves, depending on the function, type of construction and "Intrinsic intelligence" they can only be parameterized with some restrictions. The individual configurations are as follows:

The individual configurations are as follows:

- ET 200 U

Modular structure with three output modules (each with 8 digital outputs) and one input module (8 digital inputs): Three bytes must be transmitted and one byte must be received.

Config	Configuring: ET 200U #11 <>							
	ID	Order No.	Comments	E addr.	A addr.			
0	8DO		1 byte output					
1	8DO		1 byte output					
2	8DO		1 byte output					
3	8DI		1 byte input					

– ET 200 B

Compact type of construction with eight digital outputs and eight digital inputs: One byte in the transmit telegram and one byte in the receive telegram. The IDs are specified by the module selection.

Config	juring: B-8D17	3DO DP #51 <>		
	ID	Comments	E addr.	A addr.
0	8DO	1 byte output		
1	8DI	1 byte input		

Fig. 3-34 "Configuring" window

- SIMOVERT Master Drive

Slave with intrinsic intelligence: Depending on the drive converter setting, five different telegram structures (PPO types) are permitted. These must be defined when configuring and can no longer be changed. (Fields have a grey background and are therefore inactive)

Config	juring:	ring: MASTER DRIVES CB1 #71 <>			
	ID		Comments	E addr.	A addr.
0	2AX		PZD 2 Words		

Fig. 3-35 "Configuring" window

			g mae ween een prete	
🛜 Overvie	w - master systems 🛛 - Ml	JSTER.ET2		
Master 1	1 m Mastersy	ystem <1>	Hostsystem <1>	
Master 4	4 m+s Mastersy	ystem <4≻	Hostsystem <2>	
-				
	🧧 DP master system PRO	FIBUS address 4	X	
	Bus name : P	ROFIBUS-DP	Slaves X	
	Host name : S	IMADYN D Hostsystem <2>		
	Station type PROFIBUS Stationsbe	e : SIMADYN D SS52 address ∶4 izeichnung : Mastersystem <4>	ET 200 SIMATIC	
		Station type : ET 200U PROFIBUS address: 1 Station name:	DRIVES SWITCHGR.	
		Station type : B-8DI/8DO DP PROFIBUS address: 51 Station name:	MMI AS-I NU	
	- 1	Station type : MASTER DRIVES CB1 PROFIBUS address: 71 Station name:	IDENT Others	
			–	

5. After configuring has been completed, the display should look like this:

Fig. 3-36 Window, "DP master system, PROFIBUS address"

Changing the slave configuration

The configuration of the individual slaves can be subsequently changed and adapted.

- 1. Select the particular symbol in the display above by clicking on it twice with the mouse. You can return to the configuration dialog boxes via the "Slave characteristics" window.
- 2. To complete parameterization, the bus parameters must be set as a final step. A dialog window is opened under **Configuring > Bus parameters...** In this window only the bus profile (PROFIBUS-DP) and the baud rate are of importance for this typical configuration. The baud rate must coincide with that specified in the CFC, and in our example is limited by the ET 200 U and the CB1 communications module of the SIMOVERT Master Drive (currently: 1.5 Mbaud).

Bus parameter		×		
Bus name	: PROFIBUS-DP			
Parameter				
Bus profile	PROFIDUS-DP	Baud rate: 1500.0 - kDaud		
Repeater on the bus				
ОК	Cancel	Help Set parameter		

Fig. 3-37 Dialog box, "Bus parameters"

3. This completes the configuration of the SS52 for this typical configuration, and it can now be saved.

The next step when setting-up the SS52 configuration is to transfer this configured software into the memory of the SS52 communication module. There are two ways to do this:

- Transfer data via a second module interface (RS232) which is located on the same 9-pin sub-D connector as for the RS485.
 - Data transfer via RS232 can be executed using a standard PC interface (COM 1 or COM 2) whereby a special transfer program named "SS52load" downloads data into the SS52 memory.
 - This download requires the "2bf" file format. This is why the marked "Host system <2>" must be converted into the correct format via the menu command File > Export > Binary file... (the host systems must be separately handled for this operation). The SS52 configuration file is thus now located in the root directory of the COM PROFIBUS program in the directory "\progdat" for transfer to the module.
- Transfer data via the PROFIBUS interface RS485 (is directly supported by COM PROFIBUS).
 - Transfer via RS485 is not discussed, as a special PC interface card (e. g. CP 5411) is required in this case.

Transferring the configured software into the SS52 memory

3.5.3.11 Downloading the COM database into the SS52

Hardware required The following hardware is required to download the COM database onto the SS52:

- RS232 connection between the PC and SS52
 - In addition to the RS485, an additional RS232 interface is also integrated on the 9-pin sub-D connector.
 Further information on the sub-D connector, refer to the User Documentation "SIMADYN D, hardware description".
 - A special cable (TxD to RxD) must be assembled as the pin assignment of this connector does not correspond to any specific standard.

Fig. 3-38 RS232 interface

3.5.3.12 Working with the "SS52load" download tool

SS52load SS52load is integrated in COM PROFIBUS (from Version 3.1).

The user interface offers the following functions:

- Option comport: Defines the COM port to be used
- File download: Selects the required file and downloads it
- 3.5.3.13 Behavior of the SS52 during and after the download

General In order to successfully download, the different behavior patterns of SIMADYN D and the SS52 communication modules should be known before, during and after this operation. General system conditions are output via a green and a yellow LED, which are provided at each of the CS7 slots.

These LEDs only provide information as to whether the SIMADYN D as self-contained autonomous system is functioning correctly, or if there are faults/errors. Bus activities or communications with other bus nodes are not evaluated.

LED statuses when SIMADYN D runsup • When the power is applied, both LEDs briefly light-up (approximately half a second).

- The yellow LED then goes dark, so that only the green LED is lit during the remaining run-up time (approx. five seconds). Downloading is not possible during this time.
- After the run-up phase has been completed, the operating status of the SS52 is displayed.

3.6 PROFIBUS FDL coupling (SINEC L2 FDL)

An additional configuring tool (COM, NML) is not required for the • General PROFIBUS FDL coupling (Fieldbus Data Link). • PROFIBUS FDL (FDL=Fieldbus Data Link) is a bus system in accordance with EN50170 (DIN 19245 Part 1). Both PROFIBUS FDL as well as PROFIBUS FMS nodes can be connected to the same bus cable. Bus access is realized using token passing with a subordinate masterslave technique: Masters are active nodes, which pass-on the token and which can • transmit. Slaves are passive nodes, which can only transmit when directly requested to by a master. Three FDL utilities are defined in the standard: 1. SDA (send data with acknowledge) for master-master communications 2. SDN (send data with no acknowledge) for broadcast 3. SRD (send and receive data) for master-slave communications As far as FDL is concerned, SIMADYN D is always a master and exclusively uses the FDL utility SDA. Other FDL masters can be considered as communication partners. The process data and message system utilities can use the PROFIBUS FDL coupling as SIMADYN D communications utility. 3.6.1 Hardware and central coupling block 3.6.1.1 Hardware for PROFIBUS FDL Hardware The following hardware is required for the PROFIBUS FDL coupling:

- Subrack
- CPU
- CS7 module with SS5 communications module (this must also be configured in HWConfig)

The data interface between the CPU and SS5 has 16 kbytes.

CS7 LEDs The significance of the green (H10/H20/H30) and yellow (H11/H2 LEDs on the CS7 front panel are as follows:	1/H31)
--	--------

Green	Yellow	Significance
Dark	Dark	Wait to synchronize to SIMADYN D
Flashing (fast)	Dark	Intermediate status when synchronizing to SIMADYN D
Dark	Lit	Temporary status when the SS5 module is used for the first time with FDL
Lit	Dark	Temporary intermediate status at run-up; the node waits to be accepted on the bus.
Lit	Lit	Run-up error-free, no bus activity
Lit	Flickeri ng	Run-up, error-free, with bus activity

Table 3-33LEDs on the CS7 front panel

3.6.1.2 Central coupling block @CSL2L for the PROFIBUS FDL coupling

Initialization A @CSL2L function block must be configured to initialize the SS5 interface module with PROFIBUS FDL.

Data entries at
connection BDRValues between 0 and 5 can be specified at the BDR connection for the
baud rate.

Value at BDR	Baud rate in kbaud
0	9.6
1	19.2
2	93.75
3	187.5
4	500
5	1500

Table 3-34 Data entries at connection BDR

Data entries at
connection MAAValues between 1 and 126 can be specified at connection MAA for the
PROFIBUS address. Its own PROFIBUS address is set.

Data entries atTconnection ASTb

The number of active stations is specified at connection AST. Values between 1 and 126 can be specified. All PROFIBUS masters, which are connected to the same bus cable, are active stations. This parameter is used to approximately calculate the token circulation time. The entry should approximately represent that value met in practice.

Data entries at outputs ECL and ECO

Alarms and errors are indicated at the ECL (error class) and ECO (error code) outputsof the central coupling block.

ECL	ECO	Explanation
0 (alarm)	0	o.k.
	1	PROFIBUS address incorrect
	5	Incorrect coupling type
	6	o.k.
> 0 (error)	Any	Irreparable error condition; can only be exited with a reset; note the error class and -code and notify Siemens AG.

Table 3-35 Data entries at outputs ECL and ECO

3.6.1.3 Communications via PROFIBUS FDL

Data entries at address connections	Address connections AT and AR are configured as follows for communications via PROFIBUS FDL.
AT, AR	For communications via PROFIBUS FDL, at the address connection, the channel name and address stage 1 must always be specified. When transmitting (sending), address stage 2 must be additionally specified. Address stage 2 is optional for receivers.
	Special features for entries at address connection AT, AR when using PROFIBUS FDL:

Input sequence: "Channelname.Addressstage1.Addressstage 2"

Channel name

- max. 8 characters
- ASCII characters with the exception of "Point" and @
- the channel name on the data interface must be unique.
- the channel name has no specific significance for PROFIBUS FDL.
- Enter "." after the channel name
- Address stage 1: "#2-II"
 - **"#2-**"
 - Reserved ID when using PROFIBUS FDL.
 - "11"

Local Service Access Point (LSAP). The LSAP is a decimal number, value range from 2...50.

• If address stage 2 is specified, then after address stage 1, enter ".".

	 Address stage 2: "nnn-rr" When transmitting, address stage 2 must be present. This entry is optional for receivers. Address stage 2 consists of: "nnn" The PROFIBUS address of the communications partner (receiver) is a decimal number, value range 0126. "-" The hyphen must be entered and is used to separate the station address from the RLSAP. "rr" Remote Service Access Point (RSAP). The RSAP is a decimal number, value range 2 62.
NOTE	• If address stage 2 is configured for the receiver, then only telegrams from the thus specified communications partner, are accepted.
	 If address stage 2 is not configured for a receiver, then all telegrams are accepted at the LSAP, specified by address stage 1 ("open" LSAP).
	• Each LSAP can only be used once, i. e. either for transmitting or for receiving. Bidirectional use is not possible.
Examples for data	• AT- 'Send.#2-44.2-12'
entry at the address connection	 Transmits via LSAP 44 to partner with PROFIBUS address 2 at its LSAP 12.
	• AR- 'Rec.#2-10.2-13'
	 Receives via LSAP 10 from the partner with PROFIBUS address 2 from its LSAP 13.
	• AR:- 'Rec.f2.#2-48'
	 Receives from non-specified partner via "open" LSAP 48.
NOTE	• When transferring data it should be ensured that the lengths coincide for the communicating transmitters and receivers. Otherwise data transfer is "transparent", i. e. the SS5 communications module passes through all data unchecked.
	• Word- (2 byte) and double word- (4 byte) quantities are transferred in the Little-Endian format; this means that the least significant byte is sent before the most significant byte. When communicating with devices which use the Big-Endian data format, the user must appropriately adapt (e. g. for SIMADYN D by using conversion blocks SWB).

3.6.2 Data quantities, sampling times

	Max. number / max. data quantity / sampling time
Number of SIMADYN D channels (low net data quantity)	Approx.100
Max. number of SIMADYN D channels (242 bytes of net data)	40
Max. channel length (net data)	242 bytes
Fastest cycle, transmitting or receiving	10 ms
The SS5 communications module requires a specific processing time for each transmit- and receive telegram. This processing time must be taken into account when configuring. The specified value is the shortest sampling time where error-free operation is still guaranteed. For example, if 8 transmit channels are configured, then the SIMADYN D sampling time, in which these channels are configured, should not fall below 8 x 10 ms = 80 milliseconds. For receive channels, the cycle of the transmitting communications partner should be calculated.	

Table 3-36Data quantities, sampling times

3.7 PROFIBUS FMS coupling (SINEC L2-FMS)

• FDL (Fieldbus Data Link)

Is the definition of PROFIBUS layer 2, defined by EN 50170 (DIN 19245 Part 1)

PROFIBUS FMS terminology

FMS (Fieldbus Message Specification)

Is the definition of PROFIBUS layer 7, defined by EN 50170 (DIN 19245 Part 2). FMS defines objects, which are processed using utilities.

Client

The client generally issues a task to a utility.

• Server

The server generally accepts a utility task.

• Object directory

The object directory is a list of all objects and their descriptions of a station which, as server have access for processing using the FMS utilities. Objects are for example: Data types, variables. Each object is uniquely identified by a number, the PROFIBUS index. The data type, possibly an object name, authorization access and possibly a structure description are included in an object description. The objects relevant for SIMADYN D communications are variables, which are processed using the FMS utilities read, write or information report.

Read

Using the "Read" FMS utility, the client reads the value of a variable available in the server object directory. The client sends the "Read variable X" task to the server; the server sends the value of variable X as response.

• Write

Using the FMS utility "Write", the client changes the value of a variable which is available in the server object directory. The client sends the task "Write variable X", together with the new value, to the server; the server sends a conformation as response.

• Information report

Using the FMS utility "Information report", the server sends the client, unrequested, the value of a variable which is present in his object directory (of the server). For this utility, the server is an initiator which is an exception. The client does not acknowledge this. Using this utility, a server can simultaneously transmit data to several clients (broadcast mode).

Get OV

The FMS utility "Get OV" supplies the client the description of the objects available in the server object directory. The client sends the "Get OV object X" task to the server; the server sends the description of object X as response.

SIMADYN D, as client, generally executes the "Get OV" utility for a variable once before it executes the first read or write operation. The

description of the variable is in this case checked for consistency with the expected description.

	 Addressing An object can be uniquely addressed using its index in the OV (addressing per index) or using its (optional) name (addressing per name or symbolic addressing). All of the objects in SIMADYN D-OV can be optionally addressed per index or per name (if available). The configuring engineer defines whether an object is to be addressed via its index or its name. SIMADYN D, as client, addresses in the productive phase (read, write utilities) the variables per index. If the configuring engineer addresses the variables per name, then SIMADYN D first executes a "Get OV" with addressing per name, in order to receive the index of the variables.
	• Communications association: A communications relationship defines the route and type of communications between the associations. For two stations, which communicate with one another per FMS, a communications association must be configured which corresponds with that of the other. For connection-oriented communication associations, a connection is first established before an FMS utility can be realized using it; communications. For communication such as these are only possible between two stations. For communication associations without connection, several stations can communicate with one another (broadcast associations).
	Communications reference Number, which refers to a communications association.
General	The SIMADYN D communications utilities, process data and message system, are realized on PROFIBUS layer 7 (FMS).
Realized on FMS	What does implemented on FMS mean?: All of the data to be transferred are defined as object and processed using the FMS utilities, essentially with the "Read" and "Write" FMS utilities. Instead of "A sends data to B", "A (client) writes into an object in B (server)" or alternatively with interchanged roles "B (client) reads an object in A (server)".
	For FMS utilities, there is always one client and one server. A data object is always defined in the server and must be available in its object directory (OV).
Open implementation	What does open implementation mean?: The structure of the data object is open, i. e. it can be read via the FMS utility "Get OV". The SIMADYN D utilities, process data and message system, are implemented as open utilities.
Requirements	Each bus station requires the following to function on the bus:
	• Bus parameters These include baud rate, PROFIBUS address and other parameters which influence the bus speed. Baud rate and PROFIBUS address are specified using CFC. All of the other bus parameters are set using COMSS5.

- **Communication associations** Defined routes for data transfer between the bus stations. They are configured using COMSS5.
- **Object directory** For SIMADYN D, are specified by the CFC configuring.
- **Restrictions** The maximum net data length is approx. 230 byte. The maximum value is dependent on the configuring of the communication **associations**. With the specification above, one lies on the safe side.

3.7.1 Hardware and central coupling block

3.7.1.1 Hardware for the PROFIBUS FMS coupling

- Hardware The hardware required for the PROFIBUS FMS coupling:
 - Subrack
 - CPU
 - CS7 module with SS5 communications module (this must also be configured in HWConfig)
- LEDs on CS7 Significance of the green (H10/H20/H30) and yellow (H11/H21/H31) LEDs on the CS7 front panel:

Green	Yellow	Significance
Dark	Dark	Waiting to synchronize to SIMADYN D
Dark	Lit	Without database at the bus; COMSS5 configuring required!
Dark	Flickering	Without database at the bus with bus activity; COMSS5 configuring required!
Flashing (slow)	Dark	Database erroneous; after a subrack reset, run-up without database; correct the COMSS5 configuring!
Flashing (fast)	Dark	Intermediate status for synchronizing with SIMADYN D
Lit	Dark	Temporary intermediate status at run-up
Lit	Lit	Run-up error-free, no bus activity
Lit	Flickering	Run-up error-free, with bus activity;

Table 3-37 LEDs on the CS7 front panel

3.7.1.2 Central coupling block @CSL2F for PROFIBUS FMS coupling

Initialization A @CSL2F must be configured to initialize the interface module.

Data entries at
connection BDRValues between 0 and 5 are specified at connection BDR for the baud
rate.

Value at connection BDR	Baud rate in kbaud
0	9.6
1	19.2
2	93.75
3	187.5
4	500
5	1500

Table 3-38 Data entries at connection BDR

Data entries at connection MAA

PROFIBUS address. Their own PROFIBUS address is set.

Data entries at outputs ECL and ECO Alarms and errors are indicated at the ECL (error class) and ECO (error code) outputs of the central coupling block.

At connection MAA, values from 1 to 126 can be specified for the

ECL	ECO	Explanation
0 (alarm)	0	o.k.
	1	PROFIBUS address erroneous
	2	PROFIBUS address does not match the database
	5	Incorrect coupling type
	6	No database or database incomplete
>0 (error)	Any	Irreparable error status; this can only be exited using a reset; note the error class and -code and notify Siemens AG.

Table 3-39Data at outputs ECL and ECO

NOTE Error class >0 can occur, if the CFC configuring does not match the COMSS5 database. When error class >0 occurs, one should first check the configuring! Possible error cause: FMS utility, configured by CFC refers to a communications association, which is not permitted for this FMS utility (e. g. FMS utility "Read" via "Broadcast" association; FMS utility "Information report" via cyclic association).

3.7.2 Communications via PROFIBUS FMS

Data entries at address	The address connections AT, AR and US are configured as follows for communications via PROFIBUS FMS.
connection AT,	
AR and US	Special issues when making entries at address connections AT, AR and US when using PROFIBUS FMS:
Input sequence: "Channelname.Addressstage1.Addressstage2"

Channel name

- max. 8 characters
- ASCII characters with the exception of "Point" and @
- the channel name at a data interface must be unique.
- if address stage 1 and address stage 2 are not available in addition to the channel names, then SIMADYN D is server as far as the associated FMS utility is concerned and creates an object in the object directory. The channel name is part of the associated variable name.
 If the channel name starts with a number, then it is interpreted as index for the local object directory (permissible range: 6000...6199), otherwise as part of the variable name.
- If address stage 1 is specified, then after the channel name enter ".".
- Address stage 1: "nnmm"
 - can be present or not present.
 - if present, then it must always be precisely 4 characters long. "nn" and "mm" must represent numbers, which are interpreted as communication references (KR). A communications reference refers to a communications association which must be configured using COMSS5. If address stage 1 is present and address stage 2 not, then the configured SIMADYN D utility is realized on the FMS utility "Information report". This is practical for process data (broadcast functionality).
 - "nn"

Communications association via which the FMS utility "Get OV" is executed. If "00" is specified here, no "Get OV" is executed.

- "mm"
 Communication association via which the productive utility "Read", "Write" or "Information report" is executed.
- If address stage 2 is specified, then after address stage 1, enter ".".
- Address stage 2
 - can only be used together with address stage 1.
 - maximum of 20 characters long.

if address stage 2 is present, then SIMADYN D is client as far as the associated FMS utility is concerned. Address stage 2 is the variable name or index of the object for the communications partner. This object must be available in the object directory of the communications partner and its description must be able to be read using "Get OV".
 If address stage 2 starts with a number, then it is interpreted as index, otherwise as variable name. If no "Get OV" is executed on

index, otherwise as variable name. If no "Get OV" is executed on the remote object, then the object is addressed per index.

Variable name If SIMADYN D is a server as far as an FMS utility is concerned, then SIMADYN D creates a variable object in the FMS object directory.

If a number in the value range "6000"..."6199" is configured as channel name (only these numbers may be configured as channel name!), then the channel name is interpreted as index and the object is created in the object directory under this index. In this case the object does not receive a variable name. A remote client can address this object under the index.

If the channel name starts with a letter, the object is created in the object directory under an automatically assigned index. In this case, the object receives a variable name. A remote client can address this object under the variable name (only possible for communication partners which support "Addressing with names".).

The variable name, using the SIMADYN D syntax has the following structure:

"ChannelnameSubracknameCPUutility"

Channel name

Configured just like at AT, AR, US, precisely 8 characters long; if the configured channel name is shorter, then it is supplemented by "_" so that it is 8 characters long.

Subrack name

Name of the subrack in which the SIMADYN D utility is configured; it is precisely 6 characters long and if the configured name is shorter, then it is supplemented with "_" so that the total length is 6 characters.

• CPU

Number of the CPU on which the SIMADYN D utility is configured, precisely 1 character: "1"..."8".

• Utility

Identification for the SIMADYN D communications utility which creates the object; precisely 1 character. The following IDs are possible:

- "P": process data
- "M": message system.

NOTE The SIMADYN D name syntax allows an external client to obtain a listing of the utilities configured in SIMADYN D using the FMS utility "Get OV". In this case, the client not only receives information about the structure of the objects, but also information on how these objects are to be handled.

3.7.3 SIMADYN D communications utility

General The communications utilities, process data and message system, are realized, independent of the configuring on the FMS utilities "Read", "Write" or "Information report".

3.7.3.1 Process data

General Process data are transferred via PROFIBUS FMS using Read, Write or Information report. In this case, SIMADYN D can be both server as well as client. Process data have a specific structure which is open as far as PROFIBUS is concerned.

- FMS utility with SIMADYN D as server
 The channel name is specified at address connection AR of the receive block. A remote client can execute the FMS utilities "Get OV" and "Write" on this object.
 - The channel name is specified at address connection AT of the transmit block. A remote client can execute the FMS utilities "Get OV" and "Read" on this object.
 - The SIMADYN D utility ID at the end of the object name is "P".

Address example

- Subrack "BGT1", CPU No. 3, function block CRV is to be configured:
 AR- 'PZDWRITE'
 - the object name is derived from this: PZDWRITEBGT1__3P
 - the object can be written into.
- 2. Subrack "BGT1", CPU No. 3, function block CTV is to be configured:
 - AT- '6050'
 - thus, the object is saved under FMS index 6050 and can be addressed.
 - the object can be read.

 FMS utility with SIMADYN D as client
 The channel name, address stage 1 and address stage 2 are specified at connection AT of the transmit block. The object must be available in the object directory of the communications partner. SIMADYN D executes the FMS utility "Get OV" (optional) and "Write" on the remote object.

	 The channel name, address stage 1 and address stage 2 are specified at connection AR of the receive block. SIMADYN D executes the FMS utility "Get OV" (optional) and "Read" on the remote object.
	Address example
	 Function block CTV: AT- 'PZD1.0017.33500'
	 SIMADYN D writes, via communications association 17, into the remote object with the FMS index 33500. A "Get OV" is not executed.
	 Function block CRV: AR- 'PZD1.0404.actual value'
	 SIMADYN D reads the external object with the "Actual value" name via communications association 4. Before this, a "Get OV" is exe- cuted on the object using the same communications association.
Broadcast transmitter	 The channel name and address stage 1 are specified at the address connection of the transmit block:
	 AT- 'channel name.00mm'
	• SIMADYN D is server, and transmits the value of this object using the (unconfirmed) FMS utility "Information report" via the communications association "mm". This communications association must be the "Broadcast transmitter" type.
	• When transmitting using "Information report", the FMS index of the object is supplied. If a symbolic name is configured as channel name, then the index is automatically assigned, and is therefore not visible to the user.
NOTE	If the object index is known to the receiver in the Information report, then it must be explicitly configured as channel name (range: "6000" to "6199").
Broadcast receiver	• The channel name and address stage 1 are specified at the address connection of the receive block.
	 AR- 'channel name.00mm'
	 SIMADYN D is a client and receives the contents of the remote object using the (unconfirmed) FMS utility "Information report" via the communications association "mm". This communications association

must be the "Broadcast receiver" type.

NOTE Correct communications for broadcast functionality must be exclusively ensured by configuring the communication association. It should be especially noted, that only one utility can be executed via the communications association.

Address example

- 1. Function block CTV
 - AT: "6111.0007"
 - SIMADYN D transmits an object with the FMS index 6111 via communications association 7 (broadcast transmitter) using the FMS utility "Information report".
- 2. Function block CRV:
 - AR: "receiver.0008"
 - SIMADYN D receives data via communications association 8 (broadcast receiver) using the FMS utility "Information report".
- **FMS structure** The structure of the process data objects is obtained from the CFC configuring of the "Virtual connections" (refer to the Chapter, Communications utility process data).

SIMADYN D data types are converted into FMS data types according to the following table:

SIMADYN D data type	FMS data type
Integer	Integer16
Double Integer	Integer32
Bool, Byte	Unsigned8
Word	Unsigned16
Double Word	Unsigned32
Real, SDTIME	Floating-Point

Table 3-40 Converting SIMADYN D data types into FMS data types

- If precisely one connection is assigned for each transmit/receive block, then the associated FMS object is the "Simple variable" object type.
- If several connections are assigned the same FMS data type for each transmit/receive block, then the associated FMS object is an "Array" object type. The number of array elements precisely correspond to the number of connections.
- If several connections with different FMS data types are assigned to each transmit/receive block, then the associated FMS object is the "Record" object type. The number of record elements precisely correspond to the number of connections.

NOTE	The maximum number of record elements is 76.				
	If SIMADYN D is a client, and the FMS utility "Get OV" is executed (depending on address stage 1), then the object in the server must have exactly the same structure SIMADYN D expects (data transfer security!). If SIMADYN D does not execute "Get OV", then at least the net data length for both communication partners must be the same.				
Example process	Transmit block CTV:				
data, array	 CRT- '!ARRAY' (virtual connection "ARRAY") 				
	 AT- '6123' (FMS object with index 6123) 				
	Connections with virtual "ARRAY" connection:				
	– Y I- '!ARRAY.0001' FMS structure element 1: Integer16				
	 Y I- '!ARRAY.0002' FMS structure element 2: Integer16 				
	 Y I- '!ARRAY.0003' FMS structure element 3: Integer16 				
	– Y I- '!ARRAY.0004' FMS structure element 4: Integer16				
	The object with index 6123 is an "Array" object type with 4 elements.				
Example process	Transmit block CTV:				
data, record	 CRT- '!RECORD' (virtual connection "RECORD") 				
	 AT- '6000' (FMS object with index 6000) 				
	Connections with virtual "RECORD" connection:				
	– Y I- '! RECORD.0001' FMS structure element 1: Integer16				
	– Y I- '! RECORD.0002' FMS structure element 2: Integer16				
	– Y I- '! RECORD.0003' FMS structure element 3: Integer16				
	– Y I- '! RECORD.0004' FMS structure element 4: Integer16				
	– Y R- '! RECORD.0005' FMS structure element 5: Floating Point				

The object with index 6000 is a " RECORD" object type with 5 elements.

3.7.3.2 Message system

General	Messages are transferred via PROFIBUS FMS using Read or Write operations. SIMADYN D can be both server as well as client. Messages are structured, which are open as far as PROFIBUS is concerned.
FMS utility	The subordinate FMS utility is obtained from the message output block MSI configured using CFC and, more precisely by the entry made at connection AT.
FMS utility with SIMADYN D as	The channel name is specified at the address connection. The object can be read with the FMS utility Read.
Server	AT- 'channel name'
	The SIMADYN D utility ID at the end of the object name is "M".
	The communications partner must read the object at certain intervals using the FMS utility Read. If a message was also output via the message output block, then the Read operation is positively acknowledged when this message is returned, otherwise negatively acknowledged.
	Address example
	The configuring is to be made in subrack "BGT1", CPU No. 3, function block MSI:
	– AT- 'MELD'
	 thus the following object name is obtained: MELDBGT13M
	 the object can be read.
FMS utility with SIMADYN D as server	The channel name, address stage 1 and address stage 2 are specified at the address connection. The object must be available in the object directory of the communications partner. SIMADYN D writes into the external object using the FMS utility Write.
	AT- 'Channelname.Adressstage1.Addressstage2'
	SIMADYN D writes into the external object each time the message output block outputs a message.
	Address example
	Function block MSI
	– AT- 'MELD.0404.33500'
	 SIMADYN D writes into the external object with FMS index 33500 via communications association 4.
FMS structure	The FMS structure of the objects is obtained from message output block MSI configured using CFC, and more specifically from the entries made at connections SNV, STM, SSF. Connection STC must be set to "1"!

Message objects are always "Record" type objects. The structures are shown in the following tables:

NOTE Connection STC at message output block MSI must be set to "1".

SSF=1 (standardized format)				
	Contents	Message structure	FMS structure	
	Spontaneous ID	Unsigned8	Unsigned8	
	Sequence number	Unsigned8	Unsigned8	
	Message type description	1 Octet	Octet-String 2	
	Message type	1 Octet		
Only available,	Prefix	Floating-Point	Floating-Point	
if SNV=1	Suffix	Floating-Point	Floating-Point	
	Measured value	Floating-Point	Floating-Point	
	Measured value dimension text	8 characters	Visible-String 32 (if STM=0);	
	Message instant	24 characters	Visible-String 92	
Only available, if STM=1	Message text	60 characters	(if STM=1)	

 Table 3-41
 SSF=1 (standardized format)

SSF=0 (HEX format)	SSF=0 (HEX format)				
	Contents	Message structure	FMS structure		
	Spontaneous ID	Unsigned8	Unsigned8		
	Sequence number	Unsigned8	Unsigned8		
	Message type description	1 Octet	Octet-String 2		
	Message type	1 Octet			
Only available,	Prefix	Unsigned16	Unsigned16		
if SNV=1	Suffix	Unsigned16	Unsigned16		
	Measured value normalization factor	Unsigned32	Unsigned32		
	Measured value	4 Octets	Octet-String 6		
	Measured value connector type	2 Octets			
	Measured value dimension text	8 characters	Visible-String 8		
	Message instant	Time and Date	Time-Of-Day (6 Byte)		
Only available, if STM=1	Message text	60 characters	Visible-String 60		

Table 3-42 SSF=0 (HEX format)

3.7.4 Tables

3.7.4.1 Address parameters, FMS utilities

Explanations on the table
kkkkkkk:
Channel name, max. 8 characters, the first character must be a letter.

- nnnnn:
 - PROFIBUS index, max. 5 characters
 - permissible value range for local objects (channel name): 6000..6199
 - permissible value range for remote objects (address stage 2): 17..65535
- nnmm:
 - two communication references, each 2 digits
 - value range: 02..99
 - 00 may also appear at the first position

Generated data:

- - kkkkkkk: Channel name, supplemented to 8 character by underline
 - bbbbbb: Subrack name supplemented to 6 characters with underline
 - p: CPU number, 1 digit: 1..8
 - d:
 - SIMADYN D communications utility, 1 letter:
 - P: Process data
 - M: Message system

SIMADYN D configuring: Address parameters =>				ameters	SINEC L2 FMS: Utility and object		
Block	Conne ction	Channel name	Address stage 1	Address stage 2	FMS utility	Object location	Object name and index
CTV	AT	Not relevant	nnmm	Any	Client Write.req	Remote	=address stage 2
		kkkkkkk	-	-	Server	Local	kkkkkkkbbbbbbbd
MSI		nnnn			Read.ind		nnnn
		kkkkkkk	00mm	-	Server	Local	kkkkkkkbbbbbbbd
		nnnn			Information- Report.req		nnnn
CRV	AR	Not relevant	nnmm	Any	Client Read.req	Remote	=address stage 2
		kkkkkkk	-	-	Server	Local	kkkkkkkbbbbbbbd
		nnnn			Write.ind		nnnn
		Not rele- vant	00mm	-	Client Information- Report.ind	Remote	Not relevant

Table 3-43Address parameters

3.7.5 Data quantities, sampling times

	Max. number / max. data quantity / sampling time
Number of SIMADYN D channels (low amount of net data)	Approx.100
Number of SIMADYN D channels (230 bytes of net data)	40
Max. channel length (net data)	230 byte
Max. number of communication associations The maximum number of communication associations and SIMADYN D channels could be limited by the RAM memory size.	>30
Fastest read/write cycle via a non-cyclic master-master association	30 ms
Fastest read/write cycle via a cyclic master-slave association	50 ms
Fastest information report cycle via a broadcast association	30 ms

Table 3-44Data quantities, sampling times

NOTE

The SS5 communications module requires a specific processing time for each FMS task, which must be taken into account when configuring. The values specified in the table are nominal values for the fastest possible sampling times, in which error-free execution can be guaranteed. For instance, if 10 client channels are configured for master-master communication associations, then the SIMADYN D sampling time in which these channels are configured, should not fall below 10 x 30 ms = 300 milliseconds.

3.7.6 COMSS5

General The COMSS5 configuring tool with firmware and the PROFIBUS PC plug-in card CP5412 are required to configure the SS5 module.

COMSS5 can run on a PG under S5 DOS or with S5 DOS emulation or COM adapter on any IBM-compatible PC under DOS.

COMSS5 provides the bus parameters and the communication association masks for configuring, which the configuring engineer then has to complete. The "database" is loaded into the EEPROM of the SS5 communications module via PROFIBUS when configuring has been completed.

- Order No. Order No. COMSS5: 6DD1881-0AA0
 - Order No. CP5412, card and firmware (refer to Catalog ST PI):
 - SINEC CP 5412 (A2): 6GK1541-2BA00
 - SINEC PG-5412 / MS-DOS, Windows: 6GK1702-5PA00-0EA0

Additional bus components for PROFIBUS are listed in SINEC Catalog ST PI as well as possible network configurations. Files The configured data are saved in files. There are: • One network file per bus, in which the bus parameters are saved; (file: xxxxxNCM.NET and xxxxxNCM.BPB) One path file per bus, in which several communication paths are • located between COMSS5-PC and the SS5 communications module or other Siemens FMS modules; (file: xxxxAP.INI) • One database file for each bus station; (file name: Vxxxxxxx.xxx) Starting the program Program start is dependent on the software environment (STEP 5 or COM adapter, stage 5 or stage 6). After the software environment has been started, the "Interface" "SINEC L2" must first be selected. This is required in order to load the database. The "SINEC NCM" package should be selected and called-up corresponding to the software environment.

3.7.6.1 Menu structure

General For many entries, there is a selection of values which have already been entered, which are called-up with F8. F7 is used to transfer a completed mask.

Menu level 1	Menu level 2	Explanation
Init	Editing	Selects CP, database file, etc.
	Path definitions	Pre-selects the path between the PC and CP (SS5) to load the database
	End	Terminates NCM
Editing	CP Init	Enters bus station address and network file
	Network parameters - global	Edits common bus parameters for all bus stations
	Network parameters - local	Edits individual bus parameters for a bus station (optional)
	Communication associations	Edits communication associations
	Documentation	Printer output
Generating	Network setting	Transfers global network parameters locally
Loading	CP start/stop, database transfer	Loads the database
Tools	Bus selection	Defines paths to load database

Table 3-45 Menu structure

Procedure	 Select "Init" - "Edit". A mask is displayed with entries for: TYPE OF CP: Enter "CPSS5"
	 STATUS: Enter "OFFLINE FD"
	 DATABASE FILE: Database file name (for CPSS5 this must start with "V")
	 PATH DEFINITIONS: Enter the name for the path and path file
	 Select "Edit" - "CP Init". A mask is displayed with entries for: L2 - ADDRESS: L2 address of the SS5 communication module (this must correspond to the SIMADYN D configuring at function block @CSL2F!)
	 NETWORK FILE: The name of the file which contains the global network parameters (the first five characters can be freely selected, followed by "NCM.NET")
	 generation date: Can be freely edited
	 system name: Can be freely edited
	3. "Edit" - "Network parameters" (refer to the Chapter Bus parameters)
	 "Edit" - "Communication associations" (refer to the Chapter Communication associations)
	5. "Tools" - "Bus selection" (refer to the Chapter Loading the database)
	6. "Loading" (refer to the Chapter Loading the database)
3.7.6.2	Bus parameters
Editing	The bus parameters are edited in three steps:
	 "Edit" - "Network parameters - global": The global bus parameters for all stations are edited. This step must be executed once per bus. The global bus parameters are saved in the network file. Each station, which had selected this network file ("Edit" - "CP Init"), accepts the bus parameters.
	 "Generate" - "Network setting": The global bus parameters, edited in the first step, are transferred into the databases of all of the stations, which use the selected network file. In so doing, the data is checked for consistency. This step can be made once when editing the last station.

 "Edit" - "Network parameters - local": This step changes the global bus parameters for a certain station. Generally, this is not necessary.

"Network parameters global" mask

				SIMADY	N D SS5
Edit network parameters - global		Source:	NETZ1NCM.BP	В	
Most active L2 station addresses in t	he net	twork file			: 11
Additive topology data :					
Number of active remote stations : 10		Highest	station address (HSA)	: 31
Bus parameter data :					
Baud rate			: 500000		Baud
Default SAP			: 57		
Number of telegram retries (max. retry limit) : 1					
Medium redundancy			: No redun	dancy	
Bus parameter data:					
Slot-Time (TSL)	:	1000	bit times	2.0000	msec
Setup-Time (TSET)	:	80	bit times	.16000	msec
Lowest station delay (min TSDR)	:	80	bit times	.16000	msec
Highest station delay (max TSDR)	:	360	bit times	.72000	msec
Target-Rotation-Time (TTR)	:	60000	bit times	120.0	msec
GAP update factor (G)	:	30	bit times		

Table 3-46 Mask: "Network parameters - global"

NOTE

Explanations for

the fields which

can be edited

The user can edit the highlighted fields.

- The number of masters connected to the bus is specified using "Number of active remote stations". This information is important to calculate the "Bus parameter data".
- "Highest station address" is entered corresponding to the number of stations; stations with higher addresses are not entered in the bus.
- "Baud rate": 500 kbaud is recommended
- "Default SAP", "Max. retry limit" and "Medium redundancy": Use the default values.

After entering this data and depressing the F1 key, the "Bus parameter data" are computed. When required, the user can still change them (generally not necessary).

3.7.6.3 Communication associations

Selecting the communications association	After selecting the menu item "Edit" - "Communications association", the application type of the communications association should first be selected. A list of the various possibilities is obtained with F8. The application-type specific mask is then obtained using F4.			
NOTE	A communications association is uniquely identified by the communications reference. Numbers 2 to 99 can be used for the communications reference. It should be observed that the numbers, from number 2, must be used consecutively, i. e. without gaps. Otherwise, the SS5 communications module will not correctly run-up after the database has been loaded.			
Rules	The communication associations via which two stations communicate with one another, must also correspond with one another. The following rules must be maintained:			
	"Association type" must coincide.			
	 "Local LSAP" can be freely selected in the value range 250. Each local LSAP may only be used once per SS5 communications module. 			
	 "Remote addresses" address the other stations. For a pure server, 255 can also be entered and then the association is open for any station. 			
	 "Remote LSAP" must correspond to the local LSAP of the other station. For a pure server, 255 can also be entered and then the association is open for any local LSAP of the other station. 			
	• The maximum length of the transmit PDU is defined using "Max. PDU length". For SIMADYN D SS5, the receive PDU is always set to the highest possible maximum value of 245. The following is valid: The maximum length of the receive PDU of a partner must be higher or equal to the maximum length of the transmit PDU of the other partner.			
	• The "Monitoring interval" must be the same for non-cyclic communication associations for two partners. A value of "0" corresponds to no monitoring. For a monitoring interval not equal to "0", idle telegrams are exchanged between the partners.			
	• The "Multiplier" is only relevant for clients for cyclic connections.			
	• "Password", "Group" and "Profile", are data, which the client must transfer when establishing a connection. They are used for access protection. In most cases, the default values (="0") are sufficient (if the other partner does not request other data).			
	 Up to five utilities (GET OV (detailed version), Read, Write, Information report, symbolic addressing) can be selected under "Supported utilities". The following is valid: If a partner is an initiator or requester (".req") 			

when it comes to a utility, then the other partner can respond to the flag or indication (".ind") of this utility.

 "Max. No. of parallel tasks" is used to define how many tasks can be simultaneously executed via this communications association. The "Transmit" data of a partner must be lower or the same as the "Receive" data of the other partner. The "Transmit" and "Receive" data refer to the tasks, not the net data! The "Transmit" data should correspond to the number of communication function blocks from the CFC configuring, which use this communications association as client.

Non-cyclic server Features:

- Non-cyclic data transfer
- SIMADYN D is exclusively a server.
- (At least one) connection must be configured for each remote client.
- Remote client establishes the connection and initiates data transfer
- The remote client can access each object in the SIMADYN D object directory.
- Several utilities are possible in parallel

Application:

• All SIMADYN D utilities, where SIMADYN D is a server.

Communications reference	:		Type :	Non-cyclic server		
Association type	:	MMAZ		Local LSAP	•	
External address	:			Remote LSAP	:	
Max. PDU length	:	241		Monitoring interval	:	0 s
Supported utility	:					
Read	:	.ind		Write	:	.ind
Get OV (detailed version)	:	.ind		Information report	:	no
				Symbolic addressing	:	.ind
Max. No. of parallel tasks:						
Transmitting	:	0		Receiving	:	1
				Designator :		

Table 3-47 Mask, "Non-cyclic server"

Rules:

- The communications reference is as required within the framework of the general rules.
- Local LSAP must be the same as the "Remote LSAP" of the remote client.
- The remote address and remote LSAP can be entered, defined, but then only the appropriately selected client can establish a connection (access protection!); or both values can be set to 255, and then the association is open for all.
- Max. PDU length should only be changed, if a remote client cannot handle the specified length.
- The monitoring interval must coincide with the remote client.
- The Read, Write, Get OV(detailed version) utilities and symbolic addressing are always supported from SIMADYN D servers as responder (".ind"). The information report utility is not required.
- The maximum number of parallel "Receive" tasks must be set at least as high as the maximum number of "Transmit" tasks of the partner.

Non-cyclic client Features:

- Non-cyclic data transfer
- SIMADYN D is exclusively a client.
- A connection (minimum) must be configured for each remote server.
- SIMADYN D establishes the connection and initiates data transfer.
- The objects, which SIMADYN D accesses in the remote server, are defined by the CFC configuring (address stage 2 at the address I/O).
- Several utilities can run in parallel

Application:

• All SIMADYN D utilities, where SIMADYN D is a client.

Communications reference	:		Type :	Non-cyclic client		
Association type	:			Local LSAP	:	
Remote address	:			Remote LSAP	:	
Max. PDU length	:	241		Monitoring interval	:	0 s
Password	:	0		Group	:	0
Profile	:	0 0				
Supported utility	:					
Read	:	no		Write	:	no
Get OV (detailed version)	:	no				
				Symbolic addressing	:	no
Max. No. of parallel tasks:						
Transmitting	:	1		Receiving	:	0
				Name :		

Table 3-48Mask, "Non-cyclic client"

Rules:

.

- The communications reference must correspond with the CFC configuring (address stage 1 at address I/O).
- "MMAZ" is the association type when establishing a connection to a master (e. g. SIMADYN D or SIMATIC) or "MSZY" when establishing a connection to a slave.
- Local LSAP is uncritical, if the server association is "open" otherwise it must correspond with "Remote LSAP" for the server.
- Remote address and remote LSAP uniquely address the server.
- Max. PDU length should only be changed if the server cannot handle the specified length.
- The monitoring interval must correspond with that of the server.

- The read, write, Get OV (detailed version) utilities and symbolic addressing should be selected (as requester ".req") as they are required.
 - Read should be selected if a receive block as client uses this association.
 - Write should be selected if a transmit block uses this association as client.
 - Get OV (detailed version) and symbolic addressing should be selected if the server supports these utilities.
 - If SIMADYN D is the remote server, all utilities can be selected.
- The maximum number of parallel tasks "Transmit" should correspond to the number of transmit- and receive blocks, configured using CFC, which use this communications association (as client). It should be ensured that for a remote server, the maximum number of parallel "Receive" tasks correspond to at least this number.

Cyclic server

NOTE

As a result of the time characteristics of the SS5 communication module, the "Cyclic server" communications association should not be used.

Features:

- Cyclic data transfer
- SIMADYN D is used exclusively server.
- An association must be configured for each object, which the remote client accesses.
- The remote client establishes the connection and initiates data transfer.
- The client can access any object in SIMADYN D-OV.

Application:

• Process data, with SIMADYN D as server

Communications reference	:		Type:	Cyclic server		
Association type	:	MSZY		Local LSAP	:	
Remote address	:			Remote LSAP	:	
Max. PDU length	:	241				
Supported utility	:					
Read	:	.ind		Write	:	.ind
				Name :		

Table 3-49Mask, "Cyclic server"

Rules:

- The communications reference is as required within the framework of the general rules.
- Local LSAP must coincide with the "Remote LSAP" of the remote client.
- The remote address and remote LSAP can be entered, defined, but then only the appropriately selected client can establish a connection (access protection!); or both values can be set to 255, and then the association is open for all.

Cyclic client Features:

Cyclic data transfer with slaves

- SIMADYN D is exclusively client.
- An association must be configured for each object which SIMADYN D accesses in the remote server.
- SIMADYN D establishes the connection and initiates data transfer.
- The object, which SIMADYN D accesses in the remote server is defined by appropriate CFC configuring (address stage 2 at the address input).

Application:

• Process data, with SIMADYN D as client.

Communications reference	:		Type:	Cyclic client		
Association type Remote address	:	MSZY		Local LSAP Remote LSAP	:	Poll-SAP
Max. PDU length	:	241		Monitoring interval	:	10 s
Multiplier	:	1				
Password	:	0		Group	:	0
Profile	:	0 0				
Supported utility	:					
Read	:	no		Write	:	no
				Name :		

Table 3-50 Mask, "Cyclic client"

Rules:

- The communications reference must correspond with the CFC configuring (address stage 1 at the address connections).
- The local LSAP is always the "Poll SAP" = SAP 58.
- The remote address and remote LSAP uniquely address the remote server.
- Max. PDU length should only be changed if the server cannot handle the specified length.
- The monitoring interval can be freely selected, however it must be greater than "0".
- The "Cyclic client" associations can be assigned priorities on an SS5 using the multiplier. Value range: 1 (low priority) ... 4 (high priority). The number specifies the ratio as to how often the utility, executed via this association, can be executed within a "poll cycle". A poll cycle is the time which a PROFIBUS master requires to address all of the slaves corresponding in its poll list. This time is generally a multiple of the token circulating time.
- The read and write utilities should be selected (as requester ".req") as they are required.
- Read should be selected if a receive block uses this association as client.
- Write should be selected if a transmit block is to use this association as client.

General information, broadcast associations	For broadcast, there is one transmitter and several receivers. The transmitter addresses all stations connected to the bus with the "remo address" 127 (this is the broadcast address). The transmitter address unique communications association for the receivers by specifying the "remote LSAP". The broadcast telegram only receives the stations wh such a communications association is configured. ("Local LSAP" of the receiver = "remote LSAP" of the transmitter).									
	LSAP 63 stations c multicast	is the broadc on the bus are LSAP is used	ast LSA e to rece d (all LS/	P and should only be used ive the broadcast telegram APs not equal to 63).	if al . Ge	l of the nerally, a				
	Only non-acknowledged FMS utilities can be transferred via broadca associations (no handshaking). The non-acknowledged FMS utility, u for SIMADYN D SS5, is the information report. For information report contrary to the read or write FMS utilities, the server initiates data transfer. The server sends the value of its object to one or several cli The client does not return an acknowledgement .									
Broadcast receiver	Features:									
	 SIMAL 	DYN D is cliei	nt (recei	ver)						
	• The re	emote server	(transmi	tter) initiates data transfer.						
	 An ass receiv 	sociation mus ed.	t be cor	figured for each object whi	ch is	s to be				
	 There partne 	is no connec ers; the transf	tion esta erred da	ablished between the comn ta is not acknowledged (no	nunio har	cation ndshaking)				
	Applicatio	on:								
	Proces	ss data, with	SIMADY	N D as receiver.						
Communications referenc	e :		Type:	Broadcast receiver						
Association type	:	BRCT		Local LSAP	:					
Remote address	:			Remote LSAP	:					
Supported utility	:			Information report	:	.ind				

Name :

Table 3-51 Mask, "Broadcast receiver"

Rules:

	 The communications reference must correspond with that configured in the CFC (address stage 1 at the address input).
	• The local LSAP with the entry "remote LSAP" must correspond to the remote transmitter.
	• Remote addresses can be entered, defined, but then only telegrams of the appropriately selected transmitter are received (access protection!); or the value can be set to 255, and then the association is open for all. Recommendation: A "broadcast receiver" association should always be defined, as this is the only possibility to provide access protection for broadcast applications.
	• The remote LSAP can be edited, but is however not evaluated (corresponds to the value 255).
	• The maximum PDU length should only be changed if the client cannot handle the specified length.
Broadcast	Features:
transmitter	SIMADYN D is server (transmitter)
	SIMADYN D initiates data transfer
	 An association must be configured for each object which is to be transmitted.
	• A connection is not established between the communication partners; transferred data is not acknowledged
	Application:
	 Process data, with SIMADYN D as transmitter.

Communications reference	:		Type:	Broadcast transmitter		
		DDOT				
Association type	:	BRCI		Local LSAP		
Remote address	:	127		Remote LSAP	:	
Max. PDU length	:	241				
Supported utility	:					
				Information report	:	.req
				Name :		

Table 3-52 Mask, "Broadcast transmitter"

	Rules:
	• The communications reference must correspond with that configured in CFC (address stage 1 at the address connection).
	• The local LSAP must correspond to the "Remote LSAP" data at the remote receivers.
	 The broadcast LSAP 63 or another LSAP is the remote LSAP (multicast LSAP)
	 The maximum PDU length should only be changed if a receiver cannot handle the specified length.
Non-specified	Features:
	Freely-configurable communications association
	SIMADYN D can be both server as well as also client
	Application:

• Communications association, where both communication partners are client and server.

Communications reference	:		Type:	Unspecified	
Association type	:			Local LSAP	:
Remote address	:			Remote LSAP	:
Max. PDU length	:	241		Monitoring interval	: 0 s
Multiplier	:				
Password	:	0		Group	: 0
Profile	:	0 0			
Supported utilities	:				
Read	:	No		Write	: No
Get OV (detailed version)	:	No		Information report	: No
				Symbolic addressing	: No
Max. number of parallel tasks:					
Transmitting	:	1		Receiving	: 1
				Name :	

Table 3-53 Mask, "Unspecified"

Rules:

- Communications reference must correspond with that configured with CFC (address stage 1 at the address connections).
- "MMAZ" is recommended as association type (the subsequent information/explanations assume this).
- The local LSAP must correspond with the "remote LSAP" of the remote communication partner.
- The remote address addresses the remote communication partners
- Remote LSAP must correspond with the "local LSAP" of the remote communications partner.
- The maximum PDU length should only be changed if a remote communications partner cannot handle the length.
- The monitoring interval must correspond with that of the partner.
- The multiplier is only relevant for the association type "MSZY" (refer to the communication associations).
- The Read, Write, Get OV (detailed version), Information report utilities and symbolic addressing should be selected as requester (".req") and/or responder (".ind"), as they are required.
 - only select read.req if a receive block uses this association as client.
 - select read.ind if a transmit block is addressed as server via this association.
 - select write.req if a transmit block as client uses this association.
 - select write.ind if a receive block is addressed as server via this association.
 - information report.req is not used.
 - select get OV (detailed version) and symbolic addressing if the partner supports this utility.
- The maximum number of parallel "Transmit" tasks should correspond to the number of transmit- and receive blocks configured using CFC which also use this communications association (as client). It should be observed that for the partner, the maximum number of parallel "Receive" tasks should correspond to this minimum number.
- The maximum number of parallel "Receive" tasks must be set as high as the maximum number of "Transmit" tasks for the partner.

3.7.6.4 Loading the database

Tool - busPaths are edited and tested using this menu item.

Editing (F1):

- 1. The path from the PG to the SS5 communications module SS5 is saved in a path file. Select F1 "Edit" after a path and a path file have been specified.
- 2. "PG/CP-L2" should now be selected as start station in the mask which is now displayed. If this is not possible, then the CP5412 driver is missing or the driver has not been started.
- Select "CP-L2" as the only additional station and enter the station address of the SS5 communications module to be addressed. This must correspond with the SIMADYN D configuring (function block @CSL2F).
- 4. A path must be edited once for each SS5 communications module. Several paths can be saved in the same path file.

Active (F4):

This utility is used to test the connection to the SS5 communications module.

The PG-L2 module CP5412 is initialized under this menu item and the connection via PROFIBUS to the SS5 communications module created via a "Path".

- 1. The currently entered path is activated by selecting F4 "Active". The following steps should now be executed in the mask which is displayed.
- Select F3 "Next K."; the following is displayed: "Direct PC connection established". Thus, the connection between COMSS5 and CP5412 has been established.
- 3. Depress F3 "Next K." again; the connection to the SS5 communications module is now established.

NOTE If this does not function, then the baud rate and station address of CP5412 (configuration file) and SS52 (central coupling block @CSL2F) should be checked.

4. Return to the main menu with 2x F8

Loading

All of the actions executed under this menu item refer to the SS5 communications module, which is addressed by the path, set under **Init path definitions**.

- First select CP Stop under the Load menu item, and then CP database transfer with menu sub-item FD > CP. Database loading is displayed.
- 2. Select **CP Start**: The database is transferred into the EEPROM and then communication module SS5 is re-started (warm start). This can take up to 2 minutes. This procedure can be identified as the two LEDs on the SS5 communications module briefly go dark and then light up again.
 - If the loaded database is inconsistent, the green diode flashes. In this case, the SS5 communications module must be reset (SIMADYN D subrack reset). The SS5 communications module then runs-up without database.
 - Uploading the database
 (CP database transfer CP > FD) is not possible!

3.7.7 Examples

General Only the relevant information for the examples is provided. At the function blocks, only inputs AT/AR are specified and possibly length information. All of the examples require that a CS7 module has been configured with an SS5 communications module as well as the @CSL2F central block.

3.7.7.1 Example 1: Process data between two SIMADYN D stations

- SIMADYN D notation: Station 1 transmits data to station 2.
- FMS notation: Station 1 writes into an object in station 2.

Fig. 3-39 Example 1

Description

Explanation	 The transmit block CTV in station 1 is the client: In addition to the channel names, address stage 1 and address stage 2 are also specified at input AT.
	 The receive block CRV in station 2 is the server: Only the channel name is specified at input AR.
	• The object is in station 2 (the server) and has the PROFIBUS index 6001.
	 Station 1 (the client) writes into the object, with index 6001, in station 2.
	• Station 1 sends the write task via its communications association 2.
	• Station 2 receives the write task via its communications association 2.
	 Communications association 2 in station 1 is a "Non-cyclic client" application type; the connection to station 2 and its communications association 2 is defined there.
	 Communications association 2 in station 2 is a "Non-cyclic server" application type.
Comments	 Additional objects can be interchanged via the same connection (station 1 with KB2 and station 2 with KB2).
	 Instead of SIMADYN D stations, external systems (e. g. SIMATIC) can be used for station 1 or station 2.
	• For station 1, with address stage 1, reference is made twice to the same "02" communications association; once for the FMS utility "Get OV", and the other, for the FMS utility "Write". For non-cyclic connections, this can and should always be the case.
	 In the above (basic) example, the object is directly assigned a PROFIBUS index using configuring. In addition, for SIMADYN D it is also possible (as server) to assign a name to the object or (as client) to address an object using a name. However, this only functions between SIMADYN D stations and external devices which have the same functionality (not for example, SIMATIC or drive converters).
Communication associations	Communication associations are configured using COMSS5 (refer to Chapter COMSS5).

Station 1, communication association 2:

Communications reference	:	2	Type :	Non-cyclic client		
Association type	:	MMAZ		Local LSAP	:	10
Remote address	:	2		Remote LSAP	:	12
Max. PDU length	:	241		Monitoring interval	:	0 s
Password	:	0		Group	:	0
Profile	:	0				
Supported utilities	:					
Read	:	No		Write	:	.req
Get OV (detailed version)	:	.req		Information report	:	No
				Symbolic addressing	:	.req
Max. number of parallel tasks:						
Transmitting	:	1		Receiving	:	0
				Name :	CL	I WRITE 2

Table 3-54Mask, "Non-cyclic client"

Explanations:

- Station 1 is the client so that the "Non-cyclic client" mask is selected here.
- "Communications reference" 2 corresponds to the data entry made in address stage 1 at input AT of the SIMADYN D transmit block.
- The "Association type" is non-cyclic, master-master, as both stations (SIMADYN D) are master.
- "Local LSAP", "Remote address" and "Remote LSAP" define the communications path between the two stations.
- The default values were used for the fields "Max. PDU length", "Monitoring interval", "Password", "Group", "Profile".
- The "Get OV (detailed version)" and "Write" utilities are supported and more specifically as requester. A client is always a requester as far as this utility is concerned.
 - "Write" must be supported, because the transmit function block is appropriately configured.

- "Get OV (detailed version)" is supported, because the SIMADYN D communications partner always supports this utility as server thus achieving a high degree of data security.
- "Symb. addressing" does not have to be supported here as the object is accessed per index (6001).
- The "Max. number of parallel transmit tasks" is equal to "1", because precisely one (write) task is defined by the SIMADYN D software.

Station 2, communications association 2:

Communications reference	:	2	Type:	Non-cyclic server		
Association type	:	MMAZ		Local LSAP	:	12
Remote address	:	1		Remote LSAP	:	10
Max. PDU length	:	241		Monitoring interval	:	0 s
Supported utilities	:					
Read	:	.ind		Write	:	.ind
Get OV (detailed version)	:	.ind		Information report	:	No
				Symb. addressing	:	.ind
Max. number of parallel tasks:						
Transmitting	:	0		Receiving	:	1
				Name :	SE	RV 1

Table 3-55 Mask, "Non-cyclic server"

Explanations:

- Station 2 is server thus, the "Non-cyclic server" mask is selected here.
- The "Communications reference" data for the server has absolutely no reference to the CFC configuring, and, within certain limits, can be freely-selected.
- "Local LSAP", "Remote address" and "Remote LSAP" must correspond to the data entered for station 1.
- For the remaining fields, the default values were selected, and the values are permanently assigned.

Comment:

- The communication references must be consecutive (without any gaps) starting with "2". For instance, if five communication associations are configured, communication references 2 to 6 should be used.
- "Association type" must be identical for both stations.
- The monitoring interval for non-cyclic communication associations should be the same for both stations.
- For servers, the value "255" can be entered for "Remote address" and "Remote LSAP". In this case, the communications association is "open", i. e. any client can establish a connection here.
- For a client, "Remote address" and "Remote LSAP" must always be defined; the client then establishes the connection to the specified partner.

3.7.7.2 Example 2: Process data between three SIMADYN D stations

Description

- SIMADYN D notation: Station 1 transmits data to station 2 and sends data and receives data from station 3.
- FMS-notation: Station 1 writes into an object in station 2 and reads and writes into objects in station 3.

Fig. 3-40 Example 2

Explanations

- Station 1 is client, station 2 and station 3 are servers.
- An object with PROFIBUS index 6001 is configured at station 2 and can be written into.
- A communications connection is established between station 1 and station 2 as well as between station 1 and station 3.
- An object, with the PROFIBUS index 6001 is configured at station 3, and it can be read. Next to it is an object with the name
 "KLAUS___BGT3__1P" which can be written into. The SS5 firmware
 generates a name for this object taken from the configured channel
 name "KLAUS", the (assumed) subrack names "BGT3", process
 number "1" and the utility ID "P" for process data. The channel name
 is made up to eight characters by adding "_", and the subrack name to
 six characters, also using "_" (separator).

- Station 1 writes into the object at station 2 with the index 6001, via its communications association 6.
- Station 1 reads the object with PROFIBUS index 6001 at station 3 via its communications association 6. Station 1 writes into the object with the name "KLAUS___BGT3__1P" using the same communications association.
- The SS5 firmware at station 3 assigns a PROFIBUS index to the object "KLAUS___BGT3__1P". The SS5 firmware in station 1 first retrieves the PROFIBUS index of this object using the "Get OV" FMS utility. All other write accesses are realized per index to save time.

Communication
associationsStation 1, communications association 2 and station 2, communications
association 2 (refer to example 1: Process data between two
SIMADYN D stations).
This is supplemented by:

- Station 1, communications association 6
- Station 3, communications association 3

Station 1, communications association 6

Communications reference	:	6	Type :	Non-cyclic client		
Association type	:	MMAZ		Local LSAP	:	11
Remote address	:	3		Remote LSAP	:	12
Max. PDU length	:	241		Monitoring interval	:	30 s
Password	:	0		Group	:	0
Profile	:	0				
Supported utilities	:					
Read	:	.req		Write	:	.req
Get OV (detailed version)	:	.req		Information report	:	No
				Symb. addressing	:	.req
Max. number of parallel tasks:						
Transmitting	:	2		Receiving	:	0
				Name :	CLI RE	A/WRI 3

 Table 3-56
 Mask, "Non-cyclic client": Station 1, communications association 6

Explanations:

• "30 s" was selected as "Monitoring interval".

- In addition to the "Get OV (detailed version)" and "Write" utilities, the "Read" and "Symb. addressing" utilities are supported. Symbolic addressing is required here as an object is addressed using names.
- "Transmit max. number of parallel tasks" has the value "2", as a readand a write task is defined as a result of the SIMADYN D configuring.

Station 3, communications association 3

Communications reference	:	3	Type:	Non-cyclic server		
Association type	:	MMAZ		Local LSAP	:	12
Remote address	:	1		Remote LSAP	:	11
Max. PDU length	:	241		Monitoring interval	:	30 s
Supported utilities Read	:	.ind		Write	:	.ind
Get OV (detailed version)	:	.ind		Information report	:	No
				Symb. addressing	:	.ind
Max. number of parallel tasks:						
Transmitting	:	0		Receiving	:	2
				Name :	SE	RV 1

Table 3-57 Mask, "Non-cyclic server": Station 3, communications association 3

Explanation:

• The entries are selected, so that they correspond with those of station 1, communications relationship 6.

Comment:

• For station 1, communication associations 3, 4 and 5 (possibly, only as dummy) must be defined as well as for station 3, communications association 2.

3.8 DUST1 coupling

Application The DUST1 coupling is a basic serial point-to-point connection. The communication utilities, service and process data can use the DUST1 coupling.

The main application of the DUST1 coupling is to establish communications with CFC or the basic service tool to commission a configured software package.

The DUST1 coupling is available in two versions:

- With CS7 coupling module and SS4 communications module
 - communication utilities, service or process data, can be configured.
 - the coupling can be accessed from all CPUs.
- With a local X01 interface on the CPU (this versions is not described in any further detail here)
 - the communications utility service is always available and does not have to be configured.
 - only one single CPU can be controlled via this service interface.

3.8.1 Hardware structure

Required hardware	The following hardware is required for the DUST1 coupling:			
	CS7 communications module with a SS4 communications module			
Cable interface	The cable interface uses RS232, but can also be changed-over to 20 mA			

or RS485 by inserting SS2 or SS3 interface sub-modules.

Generally, RS232 is used when connecting CFC or the basic service tool.

3.8.2 Configuring

General	For the serial DUST1 coupling, the telegram lengths are restricted to 256 bytes per channel (and therefore per function block).
Central coupling block	Central block @CSD01 is available to configure DUST1 via a communications module SS4 in a communications module CS7. This block has the task to initialize and parameterize the data interface on a communications module. The CS7 communications module can be accessed from all CPUs.
Transmit/receive blocks	The channel name and address stage 1 are specified at the AT-, AR- and US inputs of the transmit- and receive blocks. A unique number between 0 and 255 should be specified in address stage 1. At system run-up, it is identified whether a number has been assigned a multiple number of times for several blocks. Address stage 2 does not have to be configured.
3.8.3 Configuring example, service to CFC

• A CS7 communications module with SS4 communications module must be available in the subrack.

- All of the subrack CPUs can be addressed from the CFC via CS7/SS4.
- Service utility and DUST1 central block coupling on CPU 3 (slot 6).

NOTE CFC online addresses the CPU via the slot number (address stage 1 at input US=slot number 6)

Fig. 3-41 DUST1 with service

3.8.4 Configuring example, process data between SIMADYN D subracks

- A CS7 communications module with SS4 communications module must be available in both subracks.
 - Only the transmit- and receive blocks of the communications utility, process data, can be used for data transfer between the CPUs of various subracks via DUST1.

3.8.4.1 Subrack 1

Description The DUST1 central coupling block and 1 transmit- and 1 receive block are configured on CPU 4 of subrack 1.

(In this case, CS7 is called "D06CS7", communications module SS4 is inserted at the 2nd connector).

The data entries at inputs AT, AR of CTV/CRV must match those on subrack 1, otherwise data will not be able to be transferred.

Fig. 3-42 Configuring example: Subrack 1

3.8.4.2 Subrack 2

Description The DUST1 central coupling block as well as 1 transmit- and 1 receive block are configured on CPU 3 of subrack 2. (in this case, CS7 is called "D10CS7", communications module SS4 is inserted at connector X03).

Address stage 1 must be the same for blocks which communicate with one another:

- Subrack 1, transmitter=subrack 2, receiver=100
- Subrack 1, receiver=subrack 2, transmitter=200

Fig. 3-43 Configuring example: Subrack 2

3.9 DUST2 coupling

Application To output messages from a message system, printers can only be connected to SIMADYN D which can handle the serial communications protocol X-ON/X-OFF with additional telegram block check characters (ETX/ACK).

3.9.1 Hardware structure

- Hardware requiredThe following hardware is required for the DUST2 coupling:

 CS7 communications module with SS4 communications moduleCablesThe SC56 cable can be used to connect a printer to the communications module CS7 with communications module SS4 if an appropriate adapter is used. This adapter converts a 25-pin high-density connector into a 25-pin sub-D socket connector.PrinterThe printer must be equipped with the matching interface module, which is parameterized for the settings configured with SIMADYN D (e. g. baud rate, parity).Further information

 on the printer, refer to the printer Manual.Printer DR 215-N is used as message printer
 - Printer DR 215-N is used as message printer. (Refer to Catalog IC40 from AUT and SIMADYN D Info 94/14)

3.9.2 Configuring

DUST2 addresses As the DUST2 protocol operates according to the "point-to-point" principle, and a message printer can only be handled as communications partner, to output messages, a transmit address is not required (when using CS7/SS4, only a channel name should be specified at the corresponding output block; address stages 1 and 2 are not used).

Central couplingA central coupling block is available to configure the DUST2 coupling and
to set the format for printer output:

• @CSD02: For a coupling via CS7/SS4

The DUST2 central coupling block is used to initialize the communications interface (hardware driver and DUST2 software). In addition, it can configure the protocol (minimum) with the following I/O (connections):

• **PAR** (parity) This specifies the parity in the telegram characters (0 = even, or 1 = odd number of ones)

	 FRM (format selection) To optically improve the text, it can either be output in a standard format (FRM = 0) (lefthand and righthand margin, narrow fonts, pag break) or non-formatted (FRM = 1). The format instruction is only us by DUST 2 in conjunction with the 20mA interface after the interruption has been identified. 			
	 SIMADYN D is powered-up (20 mA current source from SIMADYN D as transmitter is active). 			
	 The printer is powered-down (20mA current source from the printer is inactive as transmitter). 			
	 The 20 mA connecting cable from SIMADYN D to the printer is not inserted. 			
Text output block	The MSIPRI message output block should be used (refer to Chapter Communications utility, message system).			

3.10 DUST3 coupling

Application	The DUST3 data transfer protocol is mainly used to exchange data with SIMATIC S5 or TELEPERM M.			
	From the SIMATIC S5/TELEPERM M perspective, SIMADYN D behaves just like a SIMATIC S5/TELEPERM M device, with the restriction, that telegram fetch is not possible (however test telegrams from TELEPERM M are responded to).			
Data transfer protocol	The data transfer protocol is a 3964(R) protocol with an RK512 computer coupling protocol overlay (a precise description, e. g. for: SIMATIC S5 COM525).			
Data transfer time	The data transfer time is 1.15 ms/byte at 9600 baud. The telegram frame including response telegram is 25 bytes long (net data length =< 128 bytes).			
	• Example: At 9600 baud, it takes: 1.15 * (25 + 50) = 86 ms, to transfer 50 bytes of net data			
Telegram length	The maximum telegram length is 750 bytes. However, there are coupling partners (e. g. TELEPERM), which permit a maximum telegram length of only 128 bytes.			

3.10.1 Hardware structure

Hardware required The following hardware is required for the DUST3 coupling:

• CS7 communications module with an SS4 communications module

3.10.2 Configuring

3.10.2.1 Data entries at inputs AT, AR

Rules A channel name and address stage 1 must be specified at input AT/AR. Data entries for address stage 2 are optional. For address stage 1 and address stage 2 there is a defined syntax, which is now described:

Address stage 1 consists of:

- SIMATIC processor number: Precisely one character, value range "1".."4". This entry is optional and is only practical for transmitters. The data entry is used to address a SIMATIC processor, as long as the receiving SIMATIC can handle the multi-processor technology used.
- Output command with data block and data word: "ADxxx-yyy"
 - AD: "Output" "data block"
 - xxx: Data block, value range 1..255

- -: Hyphen as separating character
- yyy: Data word, value range 0..256
- Or an output command with absolute SIMATIC address: "ASwwww"
 - AS: "Output" "memory"
 - wwwww: Absolute address, value range 0..65535

In the transmit direction, the output command addresses the data blocks and memory addresses in the SIMATIC. In the receive direction, the data entry is used to emulate an appropriate data block or memory address, so that an output command, received by a SIMATIC, is correctly processed.

NOTE SIMADYN D does not support a "Fetch" telegram or input command ("E" code).

The optional address stage 2 consists of:

- Coordination flag: This is only practical for transmitters: "zzz-u"
 - zzz: Coordination flag byte, value range 1..255
 - -: Hyphen as separator
 - u: Coordination flag bit, value range 0..7

Example of data entries at inputs AT, AR

- AT- 'PZD1.3AD20-10.130-5"'
 - The data are sent to SIMATIC processor No. 3 and saved in data block 20, from data word 10. A coordination flag must be specified
- AT- 'PZD2.AD10-30'
 - The data are sent to the SIMATIC and are saved in data block 10 from data word 30.
- AR- 'PZD3.AD50-50'
 - Data are received from a SIMATIC, which transmits output command "AD50-50" to SIMADYN D.

3.10.2.2 Central coupling block

General Central block @CSD03 is required to configure the DUST3 coupling via an SS4 communications module in a communications module CS7. This block has the task to initialize and parameterize the data interface on a communications module SS4 in a communications module CS7. All CPUs can access the CS7 communications module.

I/O (connections) The central coupling block has the following I/O (connections) to parameterize DUST3:

• **PRI** (transmit priority)

If a transmit request occurs simultaneously, this defines which of the two communication partners can first transmit. PRI=0 means that the partner can first transmit; PRI=1 means that the SIMADYN D first transmits. This data entry must be different for SIMADYN D and the communications partner.

• BCC (block check character)

This defines whether a block check character is also transferred. BCC=0 means that no block check character is sent (this corresponds to procedure 3964, Hamming distance=2); BCC=1 means that a block check character is sent (corresponds to procedure 3964R, Hamming distance=4). For SIMADYN D and the coupling partner, this data entry must be the same.

- LS (transport layer identification) This defines whether and how the RK512 protocol is to be used.
 - LS=0: The RK512 protocol is used, as specified for SIMATIC; especially for data transfers in the single-word format, the data words high byte before low byte are transferred ("Big-Endian" or "Motorola" format).
 - LS=1: Protocol RK512 is used, but for single-word format data transfer, the data words are transferred, low byte before high byte ("Little-Endian" or "Intel" format). For example, this is used for couplings to COROS.
 - LS=2: Protocol RK512 is not used. Data is directly transferred with the procedure 3964(R).

3.10.2.3 Transmit/receive blocks

General information and connections (I/O) All transmit- and receive blocks of the process data utility can be used which have address inputs (AT/AR). To start off with, a unique channel name must be specified at these connections. This is then followed, separated by a point (period - separator), by the address data required for DUST3.

3.11 DUST7 coupling

3.11.1 General

Using the DUST7 The DUST7 coupling is a basic, serial point-to-point connection. The communication utilities, process data and message system, can use the DUST7 coupling.

The main use of the DUST7 coupling is:

- to transfer process data to devices with basic serial interfaces or PCs with the customers own applications, or
- to output messages on simple terminals.

In addition to the pure net data, an optional configurable end of telegram with maximum 2 characters is transferred. If an end of telegram has not been configured, then the end of telegram is identified by an interval time of 4 character times.

3.11.2 Hardware

Hardware required The following hardware is required for the DUST7 coupling:

- Subrack
- CPU
- CS7 module with SS4 communications module (this must also be configured in HWConfig)

An RS232 interface is used which can also be changed over to 20 mA or RS485 by inserting an SS2 or SS3 interface module.

3.11.3 Configuring

Central DUST7 The @CSD07 central coupling block must be configured. The character frame and the end of telegram can be configured at its initialization inputs.

Further information

on the @CSD07 central block, refer to the User Documentation "SIMADYN D, function block library".

Process data,
transmitter and
receiverA maximum of one transmit block and one receive block (CTV and CRV)
may be configured. Only a channel name must be specified as address
parameter (AT-, AR input). The channel name must be different for the
transmitter and receiver.

Message outputOne or several message output blocks (MSIPRI) can be configured. Ifblockseveral message output blocks are configured, then their channel names
must be identical ("Select" data transfer mode).

3.12 MPI coupling

3.12.1 Characteristics and hardware

Characteristics MPI (Multi Point Interface) is the standard communications protocol for SIMATIC S7/M7. Data transfer is realized via a multi-master bus with a maximum of 126 nodes.

For SIMADYN D, MPI is used to connect the CFC for start-up and testing configured software, and is also used to communicate with WinCC and SIMATIC OPs.

With the MPI coupling, the communication utilities service (FB-SER) and S7 communications (FB-S7OS) are used.

Hardware The following hardware is required for the MPI coupling:

- Subrack
- CPU
- CS7 module with SS52 communications module (this must also be configured in HWConfig)

3.12.2 Configuring

HWConfig The CS7 communications module and the SS52/MPI communications module must be configured in HWConfig. Its own MPI address must be specified for SS52/MPI.

Function blockPrecisely one @CSMPI central coupling block must be configured for
each SS52/MPI. The @CSMPI function block initializes and monitors the
MPI coupling.

Additional information

to configure an MPI coupling, refer to:

- Section "Communications Utility Service"
- Section "Communications with SIMATIC Operator Panels"
- Section "Communications with WinCC (MPI)"

3.13 USS master coupling

General	The USS master coupling defines an access technique, according to the master-slave principle for data communications via a serial bus.				
Features	A multi-point-capable coupling is supported				
	Master-slave access technique				
	Single-master system				
	1 master and a maximum of 31 slaves				
	Bus line: Line without any branching				
Mode of operation	The master addresses the individual slaves using an address character in the telegram. A slave can never initiate data transmit. Individual slaves cannot transfer data directly between themselves.				
SIMADYN D communication	The following SIMADYN D communications utilities can be connected to the USS master coupling:				
utilities	Process data				
	Message system				
	Display control				
	Parameter processing				
3.13.1 Hardw	vare structure				
Hardware required	The following hardware is required for the USS master coupling:				
	 CS7 communications module with an SS4 communications module (USS master). The interface is an RS485 interface (SS31 interface sub-module). 				
Bus termination	The bus cable must be terminated at both ends. A 150 Ω resistor is connected between the RS485P and RS485N data signal lines at the first and last nodes.				

Basic network If a node is not transmitting, then the bus has an undefined potential, because all transmitters are switched into the high-ohmic state. To suppress signal faults in this status, a basis network is connected to the bus so that it has a defined positive signal level. The basis network should be connected at the nodes where the bus cable ends.

Fig. 3-44 Basis network and bus termination

Fig. 3-45 Screening and potential bonding

Connector assignment with basis network This circuit should be used if the SS4 communications module is used as end node on the USS bus, i. e. at the end of the bus cable.

Fig. 3-46 Connector assignment with basis network

Connector assignment without basis network This circuit should be used if the SS4 communications module is not used as end node on the USS bus, i. e. not at the end of the bus cable. In this case, the bus cable is looped-through the bus connector.

Fig. 3-47 Connector assignment without basis network

3.13.2 Data transfer technique

Mode of operation Data transfer is realized in the half-duplex mode via an RS485 interface (2-conductor cable). The master addresses all of the slaves, one after another, with a telegram. The addressed slaves transmit a telegram back to the master. In accordance with the master-slave procedure, when the slave receives a telegram, it must first transmit a telegram back to the master before the master re-addresses this slave.

The sequence of the addressed slaves can be specified by entering the station address in a circulating list (refer to the central coupling block @CSU). If several slaves must be addressed in a faster cycle (scan) than the others, then their station address can be configured a multiple number of times in the circulating list.

The scan time isn't defined due to the inconsistent telegram delay- and processing times.

Fig. 3-48 Definition of the cycle time

3.13.3 Transferred net data

General On the receive- as well as on the transmit side, up to 252 bytes of net data can be transferred. The net data length can be configured and is dependent on the particular application.

3.13.4 Configuring

3.13.4.1 Central coupling block @CSU

Initialization and An @CSU central coupling block has to be configured to initialize and monitor the coupling. The central block only initializes the coupling during cyclic operation; the coupling remains inhibited before cyclic operation.

Thus, it can take several sampling periods until the first telegram is transmitted or received!

3.13.4.2 Function blocks which can be used

General All of the function blocks for the communications utilities, process data, message system and display, can be used.

Data entries at
inputs AT, ARA unique channel name must be specified at inputs AT/AR. Address
stage 1 and address stage 2 are used as follows:

AT/AR: "Channel name.address stage 1.address stage 2"

Channel name

- unique channel name
- Enter "." after the channel name
- Address stage 1
- telegram type
- value range and significance:
 0: drive telegram
 1: OP2 telegram
- Enter "." after address stage 1
- Address stage 2
- station address of the slaves where data is to be transferred.
- value range and significance:
 0 30: slave station address
 99: broadcast address

Examples of data 1. AT- 'SENDER.0.25' entries at AT, AR – the channel with

- the channel with the name BROADCAS sends a device telegram to the station with number 25.
- 2. AT- 'BROADCAS.1.99'
 - the channel with the name BROADCAS transmits an OP2 telegram as broadcast telegram.
- Precisely one transmit- and precisely one receive channel are permitted for each slave. If more transmitters/receivers attempt to log-on, then these channels remain active.
 - A maximum of 16 broadcast transmitters are permitted. If more than one broadcast transmitter attempts to log-on, these channels do not go into operation.

3.13.4.3 Telegram types

Drive telegram	The "Drive" telegram type should be used for communications to variable-speed drives. Drive telegrams are exclusively transmitted as standard telegrams in accordance with the drive profile (refer to /1/).				
OP2 telegrams	The "OP2" telegram type should be used for establishing communications to operator control devices. OP2 telegrams are exclusively transmitted as special telegrams (refer to /1/).				
Broadcast telegrams	Station address "99" should be configured for communications using broadcast telegram. Broadcast telegrams are only transmitted as special telegrams (refer to /1/). Broadcast telegrams cannot be transmitted to drives ("drive" telegram type)!				
Mirror telegrams	The master can request a mirror telegram from a slave. To realize this, the master transmits a telegram to the slave. This telegram differs from the standard telegram only by the fact that one bit of the address byte is set. The slave transmits this telegram unchanged back to the master (mirrored). This mirror telegram can be used to check data transfer between master and slave. Mirror telegrams are transmitted, dependent on the configured telegram type, either as standard telegram in accordance with the device profile ("drive" telegram type) or as special telegram ("OP2" telegram type) (refer to /1/).				

3.13.5 Mode of operation

The USS master coupling cyclically transmits data, whereby all of the slave nodes are addressed one after the other. In this case, it is unimportant whether new transmit data were made available by the blocks or not. If no new data was made available, then the data which were last transmitted, are again transferred.
The USS master coupling only identifies a valid receive telegram, if the number of received net data is the same as the configured number of receive data.
The sequence of the slaves which are addressed can be specified by appropriately entering the station address in a circulating list (also refer to the central coupling block @CSU). If several slaves are to be addressed in a faster cycle than others, then their station address can be configured a multiple number of times in the circulating list.
If a circulating list is not configured, all of the slaves are addressed according to their station address in an increasing sequence.
In the broadcast mode (station address=99), the master transmits a telegram to all of the slaves connected to the bus. The slaves do not respond to a broadcast telegram. The broadcast telegram is processed at the end of each bus circulation (all slaves are addressed once). In this case, a maximum of two broadcast telegrams are transmitted. If the maximum of 16 possible broadcast tasks are available, these are transmitted after 8 bus cycle. The USS master coupling ensures that a

"slower broadcast transmitter" is not blocked by a "faster" broadcast transmitter.

Monitoring mechanisms and error response The USS master coupling monitors the delay time of the received telegram. The time interval between the last character of the transmitted telegram and the first character of the received telegram is considered to be the delay time. The maximum permissible delay time is 20 ms. If the addressed slave does not respond within the maximum permissible delay time, the USS master coupling flags the receive channel, assigned to this slave, as being faulted. If a receive channel is not configured, no error entry is made.

The USS master coupling then transmits a telegram destined for the next slave.

The error entry for the faulted slave is only reset after the slave receives the next error-free telegram.

3.13.6 USS master on the T400 technology module

This section describes the special issues which you have to observe when using the USS master coupling on the T400 technology module.

In this section, **you will only find the differences** over to **Section 13.1 to 13.5**.

The USS master coupling allows you to connect, approx.

- 17 drive converters or
- 19 OP2 operator control devices, or
- 8 drive converters and 8 OP2

As prerequisite for the coupling, you will require a *T400 technology module (terminals 70..71, serial interface X01 or terminals 74..75, serial interface X02).*

Data transfer uses a half-duplex technique according to the RS485 Standard via a 2-conductor cable.

Please note:

- It is not possible to simultaneously use two USS couplings (USS master, USS slave) on the serial X01 and X02 interface.
 - You must set switch S1/8 to the on position so that you can use the serial X01 interface for the USS master coupling.

3.13.6.1 Basis network for the T400 technology module

You must set the switch according to the table below dependent on whether you are using the T400 technology module as *end node* or *not as end node* on the USS bus, i.e. *at the end* or *not at the end* of the bus cable.

Serial interface	Switch	
X01	S1/1 and S1/2	
X02	S1/3 and S1/4	

3.13.6.2 Initialization

You must configure the @USS_M function block so that you can initialize the USS master coupling.

3.13.6.3 Broadcast

You may configure *precisely 2 broadcast senders*. If you configure more than 2 broadcast senders, then these will not go into operation.

If the maximum of 2 possible broadcast tasks are present, then these are sent precisely after one bus circulating time.

3.13.7 Literature

/1/ protocol)	Specification "Universal serial interface protocol		
protocoly	Order No.: E20125-D0001-S302-A1 Version: 09.94 Bohrer/Möller-Nehring ASI 1 D SP3		
/2/	EMC Guidelines refer to the User Documentation SIMADYN D, hardware		

3.14 USS slave coupling

The USS slave coupling allows you to

- transfer process data
- handle and visualize parameters

To exchange process data, you have a maximum of

- one transmit channel (actual values) and
- one receive channel (setpoint).

You can transfer up to 32 process data sets, each 16 bits via each of these channels.

For the coupling, you require a *T400 technology board (terminals 70..71, serial interface X01 or terminals 74..75, serial interface X02)*.

Data transfer is realized using a half-duplex technique via a twoconductor cable in accordance with the RS485 Standard.

Please note the following:

- It is *not possible to simultaneously use* two USS couplings (USS master, USS slave) at serial interfaces X01 and X02.
- You must *switch-in switch S1/8* (close) so that you can use *serial interface X01* for the USS slave coupling.

3.14.1 Basis network for the T400 technology module

Depending on whether you use the T400 technology board as *end node* or *not as end node* on the USS bus , i.e. *at the end* or *not at the end* of the bus cable, then you must *open* or *close* the switches according to the table below.

Serial interface	Switches		
X01	S1/1 and S1/2		
X02	S1/3 and S1/4		

3.14.2 Initialization

You must configure the *function block* $@USS_S$ so that you can initialize the USS slave bus coupling .

3.14.3 Exchanging process data

3.14.3.1 Transmitting

You must configure the *CTV function block* so that you can transmit process data. Bus

Select the "Refresh" mode as the data transfer mode, i.e. always the most up to date data are available to you at the receive side.

At connection AT, configure a unique channel name for this data interface.

Please observe: If you have configured, using virtual connections, more data than specified at connection PZD of function block @USS_S, then this excess data is *cut-off.*

- If you have configured, using virtual connections, *less data*, than are specified at the PZD connection of function block @USS_S, then the telegram is *filled-up* with "0s".
- The transmit telegram is started *asynchronously to the sampling time* of the CTV function block after a telegram has been received.

Please refer to the "Manual, configuring the communications D7-SYS, Chapter communications utility, process data" for additional configuring rules when transferring process data.

3.14.3.2 Receiving

In order that you can receive process data, you must configure the *CRV function block*. Bus

Select the "Refresh" mode as the data transfer mode, i.e. always the most up to date are available to you at the receive side.

At connection AR, configure a unique channel name for this data interface.

Please note:

- If you have configured, using virtual connections, *more data* than specified at connection PZD of function block @USS_S, then this excess data is *cut-off.*
- If you have configured, using virtual connections, *less data*, than are specified at the PZD connection of function block @USS_S, then the telegram is *filled-up* with *"0s"*.
- The transmit telegram is received *asynchronously to the sampling time* of the CRV function block, i.e. the sampling time of function block CRV is the max. deadtime between receiving and processing data.

Please refer to the "Manual, configuring the communications D7-SYS, Chapter communications utility, process data" for additional configuring rules when transferring process data.

3.14.4 Handling and visualizing parameters

You must configure the *@DRIVE function block* so that you can handle & visualize parameters.

Please refer to the "Manual, configuring communications D7-SYS, Chapter "Parameterizing SIMADYN D" for additional configuring rules for handling & visualizing parameters.

3.14.5 Special features for 4-conductor operation of the USS-slave coupling

Thee USS slave coupling via *serial interface X02* allows you to communicate with a standard COM interface (V24/RS232) of a PC using *4-conductor operation*.

In order that you can use this capability, you must

- set connection WI4 to "1" at function block @USS_S
- connect the COM interface of your PC using an interface converter (V24 <--> RS485) at *terminals* 72..75 (serial interface X02)
- close or open switches S1/5 and S1/6 (refer to Chapter 14.1)

3.14.6 USS-slave coupling via V24/RS232

The USS-slave coupling allows you to communicate with a standard COM interface (V24/RS232) of a PC via *serial interface X01*.

In order that you use this capability, you must

- set connection WI4 to "1" at function block @USS_S
- connect the COM interface of your PC to *terminals 70..71* (serial interface X01)

3.15 Peer-to-peer coupling

The peer-to-peer coupling is a serial coupling from drive converter to drive converter. It allows you, for example

- to implement a fast digital setpoint cascade
- to power-up a multi-motor drive group together

To transfer process data, you can use, a maximum of

- one transmit channel (setpoints)
- one receive channel (actual values)

You can transfer up to five 16-bit pieces of process data via each of these channels.

You can configure the net data length on the transmit- and receive side differently.

To be able to use the coupling, you require a *T400 technology module* (*terminals* 72..75, *serial interface* X02).

Data transfer is realized using a full-duplex technique with a four-wire cable according to the RS485 standard.

3.15.1 Initialization

You must configure the @PEER function block so that can initialize the peer-to-peer coupling.

3.15.2 Transferring process data

3.15.2.1 Transmitting

You must configure the *CTV function block* so that you can transmit process data.

Select the "Handshake" mode as the data transfer mode, i.e. the telegram in the previous sampling time must have been completely sent before a new telegram can be sent.

For this reason, adapt the sampling time of the CTV function block

- to the *baud rate*, and
- the number of process data

according to the telegram run time table, provided below.

At connection AT, configure unique channel names for this data interface.

Please observe:	•	If you have configured, using virtual connections, <i>more data</i> than specified at connection LTT of function block @PEER, then this excess data is <i>cut-off.</i>
	•	If you have configured, using virtual connections, <i>less data</i> , than are specified at the LTT connection of function block @PEER, then the telegram is <i>filled-up</i> with <i>"0s"</i> .

• The transmit telegram is started *synchronously to the sampling time* of the CTV function block, i.e. there is no dead time.

Please refer to the "Manual, configuring the communications D7-SYS, Chapter communications utility, process data" for additional configuring rules for exchanging process data.

Number of process data, each 16 bit	Baud rate [kbaud]					
	9.6 19,2 38,4 93,75 187,5					
1	5.7	2.9	1.43	0.6	0.3	
2	8.0	4.0	2.0	0.8	0.4	
5	16	8.0	4.0	1.6	0.8	

Table 3-58 Telegram run times [ms] as a function of the baud rate and the number of process data

3.15.2.2 Receiving

You must configure the *CRV function block* so that you can receive process data.

Select the "refresh" data transfer mode, i.e. you always have access to the most up to date data.

Configure a unique channel name for this interface at connection AR.

Please observe:

- If you have configured, using virtual connections, *more data* than specified at connection LTR of function block @PEER, then this excess data is *cut-off.*
- If you have configured, using virtual connections, *less data*, than are specified at the LTR connection of function block @PEER, then the telegram is *filled-up* with *"0s"*.
- The transmit telegram is started asynchronously to the sampling time of the CRV function block after a telegram has been received, i.e. the sampling time of function block CRV is the max. deadtime between receiving and processing data.

Please refer to the "Manual, configuring the communications D7-SYS, Chapter communications utility, process data" for additional configuring rules when transferring process data.

3.16 SIMATIC P-bus coupling

P-bus memory	The FM 458 has a RAM memory (128 Kbytes) which can be used to connect it to a P bus. Data can be exchanged with one SIMATIC S7-CPU via this P-bus memory. The FM 458 is passive on the P bus , i.e. the FM 458 cannot directly access other modules of the SIMATIC station. There are 3 ways to transfer data to the SIMATIC CPU:					
	 4 bytes can be received from the SIMATIC-CPU using a process interrupt 					
	• 128 bytes can be sent and received via SIMATIC I/O accesses					
	 extremely large data quantities can be sent and received using data blocks/sets 					
Accessing EXM 438, EXM 448	The EXM 438 , EXM 448 expansion modules can only be accessed from the FM 458 (via the FM-internal LE bus); they have no direct connection to the P bus.					
Addresses	The start addresses of the I/O, under which a SIMATIC CPU can address the I/O range of the FM 458, are configured in HW Config. The addresses for inputs and outputs can differ.					
	HW Config menu:"Edit/Properties/Addresses"Default:512 (decimal; for inputs and outputs)					
Diagnostic interrupts	The FM 458 also sends diagnostic interrupts to the SIMATIC-CPU, independent of what has been configured, in the following situations.					
	Transition into the statuses					
	 "initialization error " 					
	 "system error " 					
	 "user stop " 					
	– "RUN"					

• If the memory module is inserted or withdrawn, or is not available

Designation	Number of data	Configuring	Speed	Computation time (on the FM 458)
1. Process interrupt	4 bytes to SIMATIC-CPU	<i>FM 458:</i> Block PAS7 <i>SIMATIC-CPU:</i> OB40, etc.	When PAS7 is called, an interrupt is initiated on the SIMATIC CPU, e.g. OB40 (if a higher priority interrupt isn't being processed at precisely that time).	Extremely low: only for PAS7
2. Data transfer with I/O (peripheral) accesses	128 bytes in the send and 128 bytes in the receive direction	<i>FM 458:</i> blocks S7RD, S7WR <i>SIMATIC-CPU:</i> transfer commands for the I/O (periphery)	When a block is called, data is immediately read- out of the memory or written into the memory.	Computation times of all configured S7RD/S7WR blocks: each approx. 5µs.
3. Transferring data sets/blocks	For extremely high quantities of data: max. approx. 125 data sets with each max. 240 bytes (refer below.)	<i>FM 458:</i> "virtual connections" with blocks @ CPB, CRV/CTV <i>SIMATIC-CPU:</i> system functions SFC58/59 Consistency: All of the data associated with a telegram are consistent with one another, i.e. they are transferred in a "data package".	The data associated with a telegram are read or sent when the block is called.	Computation time is required for each data set via telegram processing (approx. 30µs each CRV/CTV) and to copy the net data into/out of the P- bus memory. If extremely large data quantities are involved and there is a P-bus utilization, then a somewhat higher degree of computation time can be assumed. The data are transferred into the memory in blocks up to max. 16 bytes. The P bus must be re- assigned between the blocks, which means that the required computation time may increase.

3.16.1	Overview of the 3 data transfer types.	. FM 458 $\leftarrow \rightarrow$ SIMATIC-CPU
0.10.1	over them of the o data transfer types,	

Table 3-59Data transfer, SIMATIC-CPU \leftrightarrow FM 458

All of the 3 data transfer types can be used in parallel.

3.16.2 Initiating a process interrupt on SIMATIC-CPU

PAS7 Function block PAS7 initiates, when triggered, a process interrupt to the assigned S7-CPU. Supplementary interrupt info of 4 bytes is configured at the IFO input, which contains net data information.

When an interrupt is initiated, the interrupt OB, which should be configured in HW Config, is called in the SIMATIC S7-CPU. The supplementary interrupt info, taking up 4 bytes, is written into the local data of the interrupt OBs.

The start address of the input/outputs of the sending FM 458 (to be configured in HW Config; in the example 512dec = 200hex) is also saved in the local data of the OB 40.

Eigenschaften - FM458 -	(R0/S5)					HW Config
Basic clock cy	cle	Cyclic tasks	3	Ala	rm tas	nw comg
General	Addresses	Basic Para	meters	Periphe	eral ac	via "Edit/Properties" menu
Basic Parameters		\sim	\sim			
Generate Interrupt:	Int. Line 1		7			
Calastinterrust	Dismostis	e i Herdunere				1.
Select Interrupt:	None	s+maraware				Select interrupt source: "Process"
<u>R</u> eaction to CPU Stop	: Diagnostic Hardware	s				(or "Hardware")
	Diagnostic	s+Hardware				
	1 2		1			
General Add	dresses [Jyclic tasks Basic Parameter:	s	Alarm tas Peripheral ac	ks dresse	
	~ '					2
-inputs						Select number of the OB
<u>S</u> tart: 512	☐ <u>P</u> art pr	ocess image	I	nterrupt O <u>B</u> : <u>40</u>	•	(e.g. 40) as well as possibly the.
End: 639	<u>N</u> o.:	- -				peripheral address(es) (Default: 512)
Ste 🚦 Baugruppe	Bestellnummer	MPI-Adresse	E-Adresse	A-Adresse	Kor	
1 S 407 20A	6ES7 407-0RA00-0AA0					
5 FM458	6DD1607-0AA0	2	512639	512639		
5.1 MC521	6DD1610-0AH3 6DD1607-0CA0		201/4×			
	0001007-0CA0		2044			
		512de	c = 200hex			
SIMATIC S7-0	CPU	P bus	FM 4	58 (CFC p	rogran	n)
(SL program)		of the FM 458				
OB40						
"Hardware interrupt"	/	Info memory				
//Load alarm source		for process interrupt				
//(which module?):	(4 Bytes)					
L #OB40_MDL_ADDR T MW20	0:	7				
/// part alarm info:						
I MW22 DW#16	#ABCD1234	l			υī	
		· · · · · · · · · · · · · · · · · · ·				

Fig. 3-49 Data transfer to the S7-CPU with process interrupt

3.16.3 Data transfer via I/O accesses

Application To transfer low data quantities: up to max. 128 bytes

Blocks and transfer Appropriate function blocks are available for each data transfer direction and for each data type to be transferred.

SIMATIC-CPU			FM 458		
Data type	Transfer command (SL program)	Write direction	CFC function block	Data type	
BYTE	T PAB abs.addr.	>	S7RD_B	BOOL	
INT	T PAW abs.addr.		S7RD_I	INT	
DINT	T PAD abs.addr.		S7RD_D	DINT	
REAL	T PAD abs.addr.		S7RD	REAL	
BYTE	L PEB abs.addr.	÷	S7WR_B	BOOL	
INT	L PEW abs.addr.		S7WR_I	INT	
DINT	L PED abs.addr.		S7WR_D	DINT	
REAL	L PED abs.addr.		S7WR	REAL	

Table 3-60Data types and the associated commands/blocks for peripheral accesses

CFC data typeThe 8-bit CFC data type "BOOL" is represented in the SIMATIC S7-CPU"BOOL"as "BYTE" data type. This means that the SIMATIC S7 user must
appropriately set or evaluate the decisive MSB (Most Significant Bit):

- S7-CPU: bit variable
- FM 458: 1XXX XXXX = TRUE 0XXX XXXX = FALSE

Data saveIn order to achieve high processing speeds with 32-bit accesses, the
following must be ensured by appropriately configuring the FM 458/CFC
(offset, refer below) as well as programming the SIMATIC-CPU, so that

- 16-bit values (INT/WORD data types) are saved at even addresses (word limits) and
- 32-bit values (REAL, DINT data types) at addresses which are divisible by 4 (double word limits)

are saved in the two P-bus memories which are 128 bytes large.

Entering the offset for FM 458 The FM 458 side is accessed using the S7RD/S7WR blocks, at which the offset of the data to be transferred is configured, i.e. the position within the 128 bytes. When assigning the offset, the number of all of the values located before the block involved (blocks) and their data type (assigned memory range in bytes) are taken into account. It is especially important that possible overlaps are avoided. Gaps between individual values are not permitted (e.g. for reserve ranges).

However, the offset is not specified in the number of bytes, but as a multiple of the data type of the associated function block!

In this case, the offset, starting from an entry in bytes must be divided by 2 (for INT types) or by 4 (for REAL/DINT types) and this result must be configured at the offset input.

Using this technique, it is automatically guaranteed, that the data to be transferred is available at optimum addresses, i.e. addresses which can be quickly accessed. However, if the data is unfavorably structured, this can result in memory cells which cannot be used (refer to the example diagram below). In order to avoid this, for example, BYTE- and INT types should be individually distributed over the memory area, but should be arranged one after the other (consecutively).

Absolute address for SIMATIC-CPU Absolute addresses are used in the SIMATIC S7 program which are obtained from the FM 458 address and the offset of the associated S7RD/S7WR block in bytes (!):

Absolute address = (offset x F) + FM 458 I/O address

FM 458 I/O address: The start address, configured in HW Config for the I/O range of the associated FM 458

Offset = Value at the associated S7RD/S7WR function block **F** = Data type length in number of bytes:

F = 1	for S7WR_B, S7RD_B
F = 2	for S7WR_I, S7RD_I
F = 4	for S7WR, S7RD, S7WR_D, S7RD_D

Fig. 3-50 Data transfer with peripheral accesses (I/O accesses)

3.16.4 Transferring data sets

Application If extremely large quantities of data are to be transferred, e.g. for visualization applications (WinCC), or if data have to be transferred between SIMATIC and FM 458 for an extremely high number of drives.

- Memory available on the P bus: 114688 bytes (0x1C000 hex), for various "data sets" (or "telegrams").
 - max. 125 read and 125 write data sets
 - max. length per data set (telegram): 240 bytes

Features,

limit values

	 max. data quantity which can be transferred: For internal data management and buffer mechanisms, the following are required for received data sets, 2x data set length for sent data sets 3x data set length The sum of the required bytes for all of the write and read data sets may not exceed the above mentioned memory size of 114688 bytes! 			
	Example: Max. number of write and read data sets, each 240 bytes:			
	114688 bytes / (5 * 240 bytes) = 95.5733			
	A maximum of 95 write- and 95 read data sets, each with 240 bytes can be configured.			
SIMATIC S7 access with SFC	"System Function Calls" SFC are used in the SIMATIC-CPU for data set transfer:			
	• write SFC 58 data set (to the FM 458)			
	• read SFC 59 to the data set (from FM 458)			
FM 458 with "virtual	This coupling type is configured on the FM 458 in 3 steps:			
connections"	 Establish the coupling: Configure a central communications block @CPB (from the "SpezKomm" block family) to initialize and monitor the data set coupling. 			
	 Define the send and receive data sets: A function block must be configured for each data set (telegram): 			
	CRV to receive, CTV to send			
	 Data/entries at the CRV/CTV connections: CTS = FM458.P_B Connection is connected to the P bus coupling: 			
	CFC entry: Mark the CTS/righthand mouse key/connection to the operand. The configured module name (default "FM458") appears in the selection list for the module to be connected.			
	 AR / AT = 'channelname.datasetnumber" Any name (max. 6 characters) and separated by a point, the data set number, which corresponds to the RECNUM info/data in the SCF58/59 calls. Value range: 2 to 127 for the send and receive data set If several data sets are used, the channel names must be unique, i.e. they must be different. 			

CRR / CRT = 'Text'

Enter the name for the virtual connections are which are combined to form a data set (telegram).

CFC entry:

Mark the connection / righthand mouse key / connection to operand "!"

and comprises max. 6 characters.

MOD = R

P-bus communications always operates in the refresh mode.

3. Assigning process quantities to the data set:

Marked block outputs are sent and the inputs are supplied from a receive data set if they are connected to the data set/telegram via the dialog box "Insert Connection to Address". All virtual connections with this name are combined to form a data set.

A sequence number still has to be specified for each value (connection). This only specifies the sequence of the associated value in the data set, but not the absolute position!

For the CFC code compilation, the data, associated with a data set, are arranged in the memory in an increasing sequence. The sequence numbers can be assigned with gaps, e.g. so that data can be easily and subsequently inserted..

Contrary to "data transfer with peripheral accesses", for virtual communications, data is always packed consecutively without any gaps. The configuring engineer must ensure, by sensibly assigning the sequence number, that the data are saved to word or double word limits in order to achieve a high processing speed.

The sequence number does not provide information on the address and does not specify the offset!

If an offset of a value in the data set (e.g. in bytes) is required for S7 program, it can be calculated from the sum of all of the previously located values, taking into account their data type (length=2 for INT, length=4 for REAL/DINT).

Different data types	SIMATIC S7 data type	FM 458 (CFC) data type	Comments
	BYTE	BOOL	The MSB in the byte to be sent is decisive MSB = 1, BOOL is TRUE MSB = 0, BOOL is FALSE
	REAL	SDTIME	

Table 3-61 Assignment of SIMATIC S7 and SIMADYN D data types

Fig. 3-51 Transferring 3 data sets

SIMOLINK drive coupling 3.17

Basic information 3.17.1

Introduction	SIMOLINK (Si emens Mo tion Link, SL) is a digital, serial data transfer protocol using fiber-optic cables as data transfer medium.				
	The SIMOLINK drive coupling has been developed for extremely fast and/or rigid cycle transfer of process data (setpoints, actual values, control and status information)				
	 between drives (dispatcher, transceiver) SIMOVERT MASTERDRIVES MC/VC, or SIMOREG DC-MASTER or 				
	 between drives and a higher-level automation system (SL master) SIMATIC S7-400 station with FM 458 and EXM448-1 or SIMADYN D subrack with PM5/6 and ITSL 				
	 between automation systems (SL master, slave/s) 				
	Where all of the conne a common system cloo	cted nodes are sync k.	hronized (SYNC	C telegram) to	
Application	By transferring a time- SIMOLINK allows high individual drives move shaft).	equidistant and jitter- -dynamic response a in absolute position	free SYNC tele and all of the co synchronism (e.	gram, nnected .g. virtual	
Features	Max. 201 active nodes inclu- passive nodes inclu-	des (SL master, disp ide switches and cat	atcher and trans	sceiver, s)	
	 Bus cycle: Time between two SYNC telegrams, i.e. the circulating time in the ringbus 				
	 SYNC telegram: All of the connected nodes are synchronized after the telegrams were sent 				
	 Telegram: 32-bit word (double word), occupies one channel for each piece of process data. 				
	• Nodes read and write their data once every bus cycle.				
	Bus cycle = sys	tem clock cycle	Bus cycle = system	bus cycle	
	Pause	SYNC Pause		SYNC Pause	
		//		<u>/</u>	
	Telegrams for data transfer	SYNC telegram	Telegrams for data transfer	☐ ¥ SYNC telegram	

between the nodes

between the nodes

t

- Telegram runtime: 6.36 µs
- All of the telegrams are sent immediately one after the other.
- For instance, for a selected bus cycle time of 0.8 ms, the SL master can transfer
 - -one double word each to a max. of 124 slaves/transceiver, or
 - -4 double words each to a max. of 31 slaves/transceiver

The remaining times are intervals where a telegram is not sent (NOP).

- Master-slave process data transfer:
 - -up to 200 slaves/transceiver can be addressed with address gaps
 - -up to 8 double words individually for each slave/transceiver
 - -own process data for each slave/transceiver
- Dispatcher transceiver process data transfer:
 - -up to 200 consecutively addressed transceivers
 - -up to 8 double words
 - the same number of used channels for dispatcher and transceiver (nodes with a max. number of double words defines the number of channels for all)
- Data transfer rate: 11 Mbit/s
- Bus topology: Fiber-optic cable ring, each node as signal amplifier
- Max. distance between two nodes:
 - 40 m for plastic fiber-optic cables, or
 - 300 m for glass fiber-optic cables.

3.17.2 Application with master-slave process data transfer

The automation system with SIMOLINK interface is generally configured as the SL master. Whereby, all of the other coupling nodes are set as slaves/transceiver (refer to MASTERDRIVES option module SLB SIMOLINK).

The number of channels used for each slave/transceiver is defined by the SIMOLINK function blocks (connections CTV, CSV).

SIMATIC S7-400 oder SIMADYN D

Fig. 3-53 Application example for master-slave process data transfer

Master	 The SL master can read and write into all of the channels of all of slaves/transceiver. Configuring data: 			
	Function block @SL: For each slave:	MOD connection = 15 e.g. one SLSVAV		
Slave	 Each slave can read all (own!) channels. Configuring data: Function block @SL: For each read channel: For each write channel: 	of the channels and write into a max. of 8 MOD connection= 0 e.g. one SLAV e.g. one SLSV, Connection, FSL: Slave's own address Connection, NSL: 1		
Slave-to-slave data transfer	 In order to transfer data slaves/transceivers whi the same bus cycle, the be used. Configuring data: Function blocks SLAV 	In order to transfer data from slaves/transceivers to slaves/transceivers which are physically located in front in the ring, the same bus cycle, the slave-to-slave communications setting mu be used. Configuring data: Function blocks SLAV and SLDIS: Connection QV = 1		

3.17.3 Applications and modes which should be set

Various SL master, dispatcher and slave modes can be set by appropriately configuring SIMOLINK.

For **position-synchronous** actual value sensing and setpoint input (e.g. "virtual shaft" for printing or packaging machines), the **jitter-free** (equidistant in time) modes should be set

- External mode (Mode 4),
- Interrupt automatic mode (Mode 3) and
- External cyclic mode (Mode 5)
- Cyclic automatic mode (mode 10) and

(refer to the SIMOLINK function block description @SL).

Synchronized data send,
1 cycle deadtime
For the mode 3, 5 and 10, the telegram data of the previous bus cycle are processed in parallel to the bus cycle and equidistant SIMOLINK telegrams are sent and received. This allows the shortest SIMOLINK cycles to be configured. Ideally, this technique is suitable for applications with "virtual shaft with values which uniformly change", which are required, for example, for printing machines.

The operating modes **automatic mode** (Mode 3) with processing in an interrupt task Ix should be used for jitter-free synchronization of the drives

and **external-cyclic mode** (Mode 5) with synchronization to the basic sampling time T0.

The sampling time should be selected somewhat higher than the bus cycle time.
The external-cyclic mode offers the advantage that the processor hardware of two SIMOLINK rings can be synchronized to the (common) base sampling time T0.

Bild 3-56 Cyclic automatik-mode (Mode 10)

The cyclic-automatic-mode 10 offers the advantage to place the function block configuration in cyklic tasks, in opposed to mode 3.

Fastest sensing,
synchronousThe jitter-free SL-master mode, external-mode is best suited for
synchronous actual value sensing with the fastest processing (minimum
deadtime). This means, that it can be used as "virtual shaft with
dynamically changing values", for example, for packaging machines.

In the **external mode** (Mode 4) the SIMOLINK cycle is synchronized to the base sampling time T0. The SIMOLINK blocks are immediately executed in the configured interrupt task Ix when the SYNC telegram is subsequently received.

The base sampling time T0 setting must correspond as a minimum to the bus cycle time plus the interrupt task processing time.

Fastest data send, non-synchronous If data are to be transferred to other nodes after the calculation with minimum deadtime, then either the non-synchronous mode or the timer mode is used.

For the **non-synchronous mode** (Mode 1), data is directly output after the SIMOLINK blocks have been processed in a cyclic task Tx.

Fig. 3-58 Non-synchronous-mode (Mode 1)

In the **timer mode** (Mode 2), data is directly output after calculation in an interrupt task Ix which assigns the processing of the SIMOLINK blocks a higher priority.

In these non-synchronous SL-master modes, which exhibit jitter, the coupled drives cannot be operated with position synchronism if the SYNC telegram is sent in the time intervals which depend on the actual configuring. This allows the fastest possible data transfer between SL master (Mode 1 or 2) and the slave (Mode 0).

Reading telegrams, The **slave mode** (Mode 0) is used to read and evaluate the bus data transfer in a drive ring, for e.g. monitoring and diagnostic purposes.

With each received SYNC telegram, the SIMOLINK module initiates that the configured interrupt task Ix is processed. If it is used as the receive section for fast data transfer between SL master and slave, all of the telegrams can be read and processed. Furthermore, it is possible to write a max. 8 telegrams, in order to, for example, transfer signals to the SL master.

Coupling two automation systems

In order to send data between two automation systems via SIMOLINK, which exceeds the amount of data using 8 telegrams, two independent SIMOLINK rings are required. This means that every node can be configured once as SL master to send in one ring and as slave to receive in the other ring. This technique is used, for example, to achieve

- synchronized processing and
- extremely fast data transfer

between two SIMATIC FM 458 modules each with two EXM 448-1 expansion modules.

Cyclic or interrupt task ? When selecting the operating mode, it should be noted, that interrupt task processing can interrupt cyclic tasks at any time. This can influence the timing. For the non-synchronous mode, the SIMOLINK cycle is delayed and for the external cyclic mode, T0 must be adapted to prevent computation time overflow or multiple sending of the same values which have not been re-calculated.

Synchronization to the base sampling time T0 can be set in 100 μ s intervals while interrupt tasks are initiated by the SYNC telegram, dependent on the telegram duration.

3.17.4 Configuring - first steps

Using as an example a master-slave coupling, the necessary settings are subsequently described which must be or should be observed when configuring.

Fig. 3-61 Example for a master-slave coupling

HardwareThe SIMOLINK ring comprises the minimum of two and a maximum of
201 SLB modules, which are coupled to one another through fiber-optic
cables. There is only one SL master on a ring. All of the other nodes are
slaves.An SLB module is a hardware component of an ITSL, an EXM 448-1
module or an option module SLB (SIMOLINK Board, Order No.
6SX7010-0FJ00).NOTEAdditional information on these modules and their installation is
provided in the User Manual D7-SYS "Hardware", or SIMOVERT
MASTERDRIVES Instruction Manual SLB SIMOLINK board.

3.17.4.1 Configuring the SIMOLINK coupling under STEP 7

For SIMATIC FM 458 with EXM 448-1, the basic clock cycle T0, possibly the interrupt task Ix and the symbolic hardware assignment for the SIMOLINK are set in the HW Config of STEP7 in the properties dialog box.

NOTE

The EXM 448-1 expansion module should be configured as EXM 448 in HWConfig.

HW (Config - [SIMATIC 400(1) (Configuration) D7-SIMC	ILINK]						-	
Unit <u>S</u> tati	on <u>E</u> dit <u>I</u> nsert <u>P</u> LL ⊻ie	ew <u>uptions window H</u> elp								비즈
			🚟 💦							
	100							Profile Sta	andard	
	URZ									
11'1	B PS407 TUA							E BE SIN	IADYN D	-
3	CPU412-1								ATIC 300	
4	FM458							📄 🚻 SIM	IATIC 400	
4.1	MC521							֥	CP-400	
5	EXM448							🔅 🕀 💭	CPU-400	
6									FM-400	uor
8									FM 451 FM 052 CAM MODUL	F
									FM 453	
									📲 FM 455 C PID Contro	1
							-		- 📱 FM 455 S PID Contro	1
•								1	FM 456-2	
									M 456-4	
l r	0) UR2								EM 458 components	
	, D								EXM 430	
Slot	Module	Order number	MPI address	l address	Q address	Comment			FM 458	
1 1	PS407 10A	6ES7 407-0KA01-0AA0							MC 500	
	CDL/12.1	6ES7 412.1VE02.0AP0	2						📖 🚺 MC 521	
4	E FM458	6DD1607-0AA0	2	512 639	512 639			🗼 🕀 💭	IM-400	
4.1	MC521	6DD1610-0AH3			01211000			±	M7-EXTENSION	
5	EXM448	6DD1607-0EA0		2044×					P5-400	
6									SM-400	
7			_					I ⊞ - 🕅 SIM	1ATIC PC Based Control 3	00/4
8								🗄 🖳 SIM	ATIC PC Station	-
1 <u>a</u> 1								4		
								6DD1607-0	IAA0	
								Application	module FM 458 for SIMAT	IC
								8 interrupt-c	oits, 128 MHz, 8 MByte SL capable binary inputs	л-НАМ,
L.								1		
Press F1	to get Help.									Chg 🅢

Fig. 3-62 Configuring for FM458 with EXM448-1

Basic clock cycle The basic clock cycle time must be set in HWConfig in the properties window under the "Basic clock cycle" tab.

The basic sampling time must match the PWM frequency set in the MASTERDRIVE MC (the factory setting is: 5 kHz, parameter P340). The time sectors are derived from this frequency.

The usual values are 3.2 ms, 1.6 ms and 0.8 ms, to which the system can be synchronized. 1.6 or 3.2 ms are set depending on the control type.

The value, set as the base sampling time, must also be entered in parameter P746 of the MASTERDRIVES MC.

Properties - FM458 -	(R0/S4)				×
Cyclic tasks General	Addresses	Alarm tasks Basic P	arameters	Peripheral adr Basic cl	esses
Basic clock cycle	(TO)				
	Basic sam	pling time :	0.8	.≭ ms	
O Synchronize	Source	:	CPU counte	r C1	V
	Equiv. sar	npling time :	0.8	r ms	
OK				Cancel	Help

Fig. 3-63 Basic clock cycle in the HW Config

Interrupt task For modes 0, 2, 3 and 4, sources must be assigned to initiate the configured interrupt tasks.

The settings are made in HW Config in the Properties window under the "Interrupt task" tab, dependent on the configured hardware components.

Mode	Interrupt source to be set for interrupt task Ix of the SIMOLINK blocks, if:								
	EXM 448-1/ITSL, 1st expansion	EXM 448-1/ITSL, 2nd expansion	optional SLB module ITSL, 1st expansion	optional SLB module ITSL, 2nd expansion					
0	LE bus interrupt 1	LE bus interrupt 3	LE bus interrupt 2	LE bus interrupt 4					
2	LE bus interrupt 5	LE bus interrupt 6	LE bus interrupt 7	LE bus interrupt 8					
3	LE bus interrupt 1	LE bus interrupt 3	LE bus interrupt 2	LE bus interrupt 4					
4	LE bus interrupt 1	LE bus interrupt 3	LE bus interrupt 2	LE bus interrupt 4					

Table 3-62 Interrupt task source assignment for expansion modules with SIMOLINK

Properties - FM458 - (R0/S4)			
General Addresses	Basic Param	neters 📔 Basic clock cycle	;
Cyclic tasks	Alarm tasks	Peripheral adresses	
Hardware interrupt	Eq	quiv. sampling time	
I1 : LE bus interrupt L1		s 📑 ms	
12 : no	▼ 1.1	0 👘 ms	
13 : no	▼ 1.1	0 ms	
14 : no	▼ 1.1	0 r ms	
15 : no	▼ 1.1	0 ms	
16 : no	▼ 1.1	0 ms	
17 : no	• 10	0 ms	
18 : no	T 1.1	0 💌 ms	
ОК		Cancel He	lp

Fig. 3-64 Alarm task setting in the HW Config

Hardware addresses, SIMOLINK blocks

The SIMOLINK blocks @SL, SLAV, SLD, SLDIS, SLSV, SLSV2 and SLSVAV must be assigned to a HW address in the HW Config properties window of the EXM 448 under the "Plug-in module / I/O addresses tab.

The "process I/O" should be activated as plug-in module type. After this, symbolic names can be assigned for the I/O addresses (pre-set symbolic names are entered via the "Default" button.

The SIMOLINK blocks only use the symbolic name under "I/O address 2" (SIMOLINK does not require "I/O address 1").

Properties - EXM448 - (R0/S5)	×
General Addresses Plug-in module type/Peripheral adress	es
🔿 No plug-in module	
C Communications	
Process periphery	
Function	Symbol
I/O address 1	×
I/O address 2	* EXM448_Slot
<u>P</u> reallocate	
ОК	Cancel Help

Fig. 3-65 Symbolic hardware assignment of an EXM 448-1

Different symbolic names are assigned for each SIMOLINK interface.

For example, when configuring an ITSL module, symbolic names are entered for the integrated (TAD) and the optional SIMOLINK interface (OAD) under the "Addresses" tab:

Pro	operties -	ITSL	×
F	properties	Addresses	
	Plug	Function	Symbol
	CAD	Address of Counter-Chip	×
	TAD	Address of Telegram-Chip	* AC_ITSL1
	OAD	Address of Telegram-Chip	* AC_ITSL2
	Preallo	cate	
	OK		Cancel Help

Fig. 3-66 Setting hardware addresses for an ITSL module with optional SLB module

3.17.4.2 SIMOLINK function blocks

The configuring engineer can use the following function blocks:

- @SL SIMOLINK central block
- SLAV SIMOLINK receive block, one for each actual value
- SLSV SIMOLINK send block, one for each setpoint
- SLSV2 SIMOLINK send block, for two setpoints
- SLSVAV SIMOLINK send and receive block for up to 8 setpoints and actual values of the slave
- SLD SIMOLINK delta evaluation
- SLDIS SIMOLINK dispatcher

The central block @SL permits the initialization and monitoring of communications in a SIMOLINK ring.

It may only be configured once for each SIMOLINK ring in a sampled cyclic task (T4 or T5) which is, as a minimum, 4x longer than the send and receive block.

If a transceiver no longer receives a telegram as a result of an interruption, then it automatically sends a special telegram, which evaluates the @SL function block. The address of the node is output at NDM, which first signals the fault.

NOTE Additional information regarding the mode of operation and the connections (I/O) of the specified blocks are provided in the online help of the CFC Editor and in the "Function block library" reference Manual".

3.17.4.3 Parameterizing the MASTERDRIVES MC

The following parameters must be set in the SIMOVERT MASTERDRIVES MC (refer to the User Documentation "MASTERDRIVES MC"):

Parameter	Significance/setting
P740	Own node address, transceiver/slaves: 1200 (dispatcher=0)
P741	Telegram failure time, if the telegram fails, fault F056 is output. The usual values: > 3 x bus cycle time (refer to P746)
P742	Send power, dependent on the length of the fiber-optic cable
P743	Number of nodes in the SIMOLINK ring
P745	Number of channels (this is only relevant for the dispatcher)
P746	Bus cycle time (only relevant for the dispatcher)
P749	Read address, which is generated from the node address and the channel number, whereby the node address does not have to match its own node address (P740) Example: 2.0 = node address 2, channel number 0
P751	Send data, Index 1 = channel 1 (low word), Index 2 = channel 1 (high word), Index 3 = channel 2 (low word), etc.
P755	SIMOLINK configuration 0x100 should be entered for modes 4 and 5 so that synchronization is realized (this is valid from firmware release 1.4 for MASTERDRIVES MC)

Table 3-63Parameters for MASTERDRIVES MC

SIMO	LINK					
PNr.	Name		Ind	Indextext	Parameterwert	Dim
P740	SLB Teiln.Adr.	Ŀ	001	1.SLB	1	
P741	SLB TIg.Ausz.				10	ms
P742	SLB Sendeleist.				3	
P743	SLB AnzahlTeiln.	±	001	1.SLB	5	
P744	Q.SYNC Auswahl	Ŧ	001		B0 Festbinektor 0	
P745	SLB Kanalanzahl	Ŧ	001	1.SLB	4	
P746	SLB Zykluszeit	Ŧ	001	1.SLB	3.20	ms
P747	Q.SLB Appl.Flags	Ŧ	001		B0 Festbinektor 0	
r748	SLB Diagnose	±	001	Anz. SYNC-TIg	0	
P749	SLB Leseadresse		001		1.0	
			002		1.1	
			003		1.2	
			004		1.3	
			005		1.4	
			006		1.5	
			007		1.6	
			008		1.7	
r750	SLB Empf.daten	+	001		0x0	
P751	Q.SLB Sendedaten	+	001		K32 Zustandswort 1	
r752	SLB Sendedaten	÷	001		0x0	
P753	Q.SyncZeitzähler				K0 Festkon. 0%	
P754	Max.sync.Zeitsch				0 Buszykluszeit	
D7EE	SIMOLINK Konfig				0-100	

Fig. 3-67 Parameters for MASTERDRIVES MC (DriveMonitor, and SIMOVIS)

Number of nodes When configuring the system, it should be noted that the number of nodes is restricted by the following factors:

- Pulse frequency set in MASTERDRIVES MC The sampling time for the time sector to be synchronized is obtained from this pulse frequency (parameter number P340).
- Data quantity to be transferred The number of telegrams which are to be sent along the SIMOLINK ring between the SL master and the slaves.

The following formula applies:

$$N = \left(\frac{P746 + 3.18181\mu s}{6.36\,\mu s} - 2\right) * \frac{1}{P745}$$

- with P746=bus cycle time (this depends on the pulse frequency and the time sector to be synchronized)
- with P745=number of channels
- with 6.36 µs=telegram run time

Node tables When the MASTERDRIVES MC pulse frequency is set to 5 kHz, for example, the following values are determined:

No. of channels	No. of nodes							
	0.8 ms (T2)	1.6 ms (T3)	3.2 ms (T4)					
1	124	201	201					
2	62	124	201					
3	41	83	167					
4	31	62	125					
5	24	49	100					
6	20	41	83					
7	17	35	71					
8	15	31	62					

Table 3-64

Node table for various bus cycle times (drive converter/inverter time sectors in brackets)

3.17.5 Coupling diagnostics

LEDs

The user can use the 3 LEDs on the front of the SLB module to analyze the operating status.

Operating display

LED	Status	Diagnostics information
green	flashing	Error-free net data transfer via SIMOLINK
red	flashing	SLB module in operation
yellow	flashing	Data transfer with the information processor FM458 or PMx is OK

Table 3-65 Operating display, SLB module

Fault display	LED	Status	Diagnostics information
	green	dark/ bright	No net data transfer via SIMOLINK: Bus cable not connected or defective, poor fiber-optic cable transition, send power (launch power) too low
	red	dark/ bright	SLB module power supply failed Replace the SLB module or power supply through FM458 and check PMx
	yellow	dark/ bright	No data transfer with the automation processor FM458 or PMx, bus cable not connected or defective, poor fiber- optic cable transition, send power (launch power) too low, replace SLB module or automation processor FM458 and PMx

Table 3-66Fault display, SLB module

Fault output The fault statuses are output coded at the outputs YF of the appropriate SIMOLINK blocks.

NOTE

Only the last fault event is displayed.

Value	Diagnostics information F: Fault cause R: System response A: Remedy
2	 F: TAD input is incorrectly connected (e.g. HW address of CS8+SLB module) R: No telegram data transfer A: Use symbolic hardware assignment of the EXM 448-1 or ITSL module
3	 F: Incorrect module or SLB module not inserted or defective hardware R: No telegram data transfer A: Use or replace SLB module
4	 F: SLB module is already being used by another central block @SL, configured twice R: No telegram data transfer A: Only use one FB @SL for each SIMOLINK ring

Value	Diagnostics information F: Fault cause R: System response A: Remedy
5	 F: Memory access problem (internal error message) R: No telegram data transfer A: Reduce the size of the application software or move to another process module
6	 F: Send/receive block(s) signal: Central block @SL not configured R: No telegram data transfer A: Insert @SL in the software (min. 4 x sampling time of send/receive blocks)
9	 F: This software does not support this hardware combination, e.g. CS8+SLB module R: No telegram data transfer A: Use an EXM 448-1 or ITSL module for the drive coupling
10	 F: Modes 0, 2 and 4: Block was not configured in an interrupt task R: No telegram data transfer A: Configure the appropriate block in the interrupt task
11	 F: Modes 1 and 3: Block was not configured in a cyclic task R: No telegram data transfer A: Configure the appropriate block in a cycle task
12	 F: Mode 5: Block was not configured in a cyclic task with T1=T0 R: No telegram data transfer A: In HW Config: Select T1=T0, configure the appropriate block in cyclic task T1
13	 F: Mode 4: Equivalent sampling time is not equal to T0 R: No telegram data transfer A: In HW Config: Select an equivalent sampling time = T0
14	 F: Modes 0, 2 and 4: Interrupt source for the interrupt task is incorrect R: No telegram data transfer A: In HW Config: Set the interrupt task source as in the assignment table
15	 F: Mode 1: Not all send/receive blocks in one sampling time R: No telegram data transfer A: Configure all of the send/receive blocks in the same sampling time
16	 F: Incorrect mode setting R: No telegram data transfer A: Set a valid mode (mode 05) at FB @SL
17	 F: Mode 0, FB @SL: incorrect node address (slave) at input ASL R: No telegram data transfer A: Select a valid setting at input ASL: 1200
18	 F: FB @SL signals: No send and receive blocks available R: No telegram data transfer A: Configure send and/or receive block(s)
19	 F: No. of SIMOLINK telegrams too high or SIMOLINK cycle time exceeded R: Telegram data transfer up to max. possible number A: Configure max. 1021 net telegrams or increase SIMOLINK cycle time or configure fewer SIMOLINK blocks (refer to the formula)
20	 F: Send/receive block signals: Incorrect slave address R: Restricted telegram data transfer functions A: Select valid slave address: 0200
21	 F: Send/receive block signals: Channel number incorrect R: Restricted telegram data transfer functions A: Select a valid channel number: 07

Value	Diagnostics information F: Fault cause R: System response A: Remedy
22	 F: Mode 0: Slave attempts to write into an incorrect address R: Restricted telegram data transfer functions A: Select own slave address
23	 F: Logical configuring error: Slave-to-slave communications was configured as duplex operation, however, only one direction is possible for each slave (send or receive) R: Send and receive the same data A: Either configure send or receive for slave-to-slave communications
30	 F: Physical data transfer faulted on the SIMOLINK ring R: No telegram data transfer A: Increase send power (launch power) at one of the subsections, replace medium or connector
31	 F: CRC error (check sum error), data transfer along the ring faulted R: Telegram failure A: Increase send power (launch power) at one of the subsections, replace medium or connector
32	 F: Timeout error in the SIMOLINK ring, bus node signals a fault R: No telegram data transfer A: FB @SL, evaluates output NDM, beforehand, check node and medium
33	 F: Mode 0: Signaled SIMOLINK cycle time (in the special telegram from SL master) does not correspond to the configured equivalent sampling time R: Restricted telegram data transfer functions A: In the HW Config: Adapt the equivalent sampling time of the slave to that of the SL master

Table 3-67Error output, SIMOLINK-FBs

3.17.6 Options and accessories

The following are available to configure a SIMOLINK coupling and as spare part:

Order No.	Components
6SE7090-0XX84-0FJ0	SLB module, spare part (without documentation, without connector)
6SX7010-0FJ00	SLB module, retrofit package (documentation, 2 fiber-optic cable connectors, 5m plastic opto-cable, 1 connector for terminal X470)
6SY7000-0AD15	Attachment for SLB (2 LWL cables, 5m plastic opto-cable)
6SX7010-0FJ50	System package for SLB (40 fiber-optic cable connectors, 100m plastic opto- cable, 20 connectors for terminal X470)

 Table 3-68
 SIMOLINK option modules and accessories

3.18 Table function

3.18.1 Introduction

The table function in SIMATIC TDC / SIMADYN D provides the user with the possibility of linking-in and using tabular values (values in a table) in a configured software application. In this case, the function blocks TAB and TAB_D must be configured on the SIMATIC TDC and SIMADYN D sides. Tabular values, data type REAL are managed using the TAB and data type DINT, using TAB_D. The user provides the tabular values.

The table function can be configured in three modes:

- **Manual mode**, i.e. the tabular values are directly entered at the block via an online interface (e.g. CFC in the test mode), or transferred to the block using teach-in from the program.
- Automatic mode: Communications, i.e. the tabular values are transferred via a communications interface (TCP/IP, DUST1, S7 via P bus). In order to transfer tabular values from an S7 control to a SIMATIC FM 458 application module via the P bus, in addition, the WR_TAB should be configured on the S7 control side.
- Automatic mode: Memory card, i.e. the table values are downloaded into the memory card, from where they are read.
- **NOTE** The "Automatic mode, memory card" mode is presently still not available.

It should be noted, that it is only possible to toggle the modes between "Manual mode" and "Automatic mode: Communications" as well as "Manual mode" and "Automatic mode: Memory card".

A validity check is made if the tabular values have been entered or transferred. The address of the table is displayed at "TAB" output.

The tabular values are managed twice, i.e. in two tables. The table, defined as "valid" (=active) is used for all arithmetic/computation operations of the configured application software. The "invalid" (=inactive) table is used to manage value changes. All of the tabular values, changed by the user, are initially transferred into the invalid table. If the inactive table is activated, the new tabular values are mirrored in the second table. The table which had been active up until then automatically becomes invalid. This means that the new tabular values are available in both tables.

Both tables can be saved in the SAVE area which is backed-up (buffered) by a battery in order to prevent data loss (connection SAV=1 when initializing).

NOTE A precise description of function blocks TAB and TAB_D is provided in their respective online help.
 A detailed description of the WR_TAB function blocks is provided, further below in the Section "Function block WR_TAB".

3.18.1.1 Overview, "Manual mode"

The principle procedure in the "Manual mode" is shown in the following diagram:

Fig. 3-68: Principle procedure in the "Manual mode"

A detailed description of the "Manual mode" is provided in Section "Manual mode" (Page 3-182)

3.18.1.2 Overview, "Automatic mode: Communications"

In the "Automatic mode: Communications", tabular values can be transferred using the following communication versions:

- S7 via the P bus for SIMATIC FM 458 (it is necessary to additionally configure the WR_TAB on the control side)
- TCP/IP (tabular values can be transferred from a SIMATIC TDC module to another one using the CTV and CRV FBs)
- DUST1 (tabular values can only be transferred via a DUST1 interface)

The tabular values are transferred using data telegrams.

The following diagram illustrates the principle procedure in the "Automatic mode: Communications" for transferring tables from an S7 control to a SIMATIC FM 458 application module via the P bus:

Fig. 3-69 Principle procedure for "Automatic mode: Communications" (via P bus)

A detailed description of the "Automatic mode: Communications" mode to transfer tables from an S7 control to a SIMATIC FM 458 application module is provided in the Section "Automatic mode: Communications" (Page 3-184).

3.18.1.3 Function block WR_TAB

The function block WR_TAB is used to transfer tables from one S7 control to a SIMATIC FM 458 application module. The tabular values (permissible data types are REAL and double integer) are saved in a data block. They are transferred from WR_TAB to the function blocks TAB and TAB_D on the SIMATIC FM 458 application module, which then internally manages the tabular values.

The WR_TAB should be configured on the control side. The tabular values are transferred from one S7-400 control to a SIMATIC FM 458 application module via the P bus. All of the values are always transferred, which are in the DB specified at the DBNUM input.

Symbol

WR_1	ГАВ			
BO	EN	TABTEL	W	 Number of data blocks to transfer the complete DB contents
BO	REQTAB	CNTTEL	W	 Number of data blocks already transferred
BO	REQDB	STATUS	W	 Actual processing status
BO	LASTDB	ERROR	W	 If required fault messages
W	LADDR	DONE	В	 Status parameter DONE: Send operation completed
BY	RECNUM			
W	DBNUM			
DW	TFT			
	WR_ 1 - BO - BO - BO - W - BY - W - DW	WR_TAB BO EN BO REQTAB BO REQDB BO LASTDB W LADDR BY RECNUM W DBNUM TFT	WR_TABBOENTABTELBOREQTABCNTTELBOREQDBSTATUSBOLASTDBERRORWLADDRDONEBYRECNUMWDBNUMDWTFT	WR_TABBOENTABTELWBOREQTABCNTTELWBOREQDBSTATUSWBOLASTDBERRORWWLADDRDONEBBYRECNUMBWDBNUMTFT

I/O	des	cription are li	sted in the following table:			
Parameter	Declaration	Data type	Description			
REQTAB	INPUT	BOOL	REQTAB = 1: Request to write a new table			
REQDB	INPUT	BOOL	REQDB = 1: Request to write the tabular values which are saved in the data block			
LASTDB	INPUT	BOOL	Last DB for the table			
LADDR	INPUT	WORD	Logical address of the SIMATIC FM 458 application module			
RECNUM	INPUT	BYTE	Data set number for the read and write data set			
DBNUM	INPUT	WORD	Data block number of the DB in which the tabular values are located.			
TFT	INPUT	DWORD	TIMEOUT time in ms for receiving acknowledge telegrams from the SIMATIC FM 458 application module.			
TABTEL	OUTPUT	WORD	Number of data blocks required to transfer the complete DB contents			
CNTTEL	OUTPUT	WORD	Number of data blocks already transferred to the FM module			
STATUS	OUTPUT	WORD	 Indicates the current status of the processing / data transfer: 0: Table transfer is inactive 1: Table transfer is active. Table values have been partially transferred from a DB (wait for the next partial transfer) 2: Table values have still not been completely transferred from a data block. 			
ERROR	OUTPUT	WORD	If a fault/error occurs while processing the function, then the return value is an error code			
DONE	OUTPUT	BOOL	Status parameter DONE=1: Send operation has been completed			

The individual connections (I/O), their data types and a connection description are listed in the following table:

Error code	Explanation	Remedy
0xB210	ОК	-
0xB211	Logical module address invalid	Specify a valid module address at input LADDR.
0xB212	Data set number not valid	Enter the tabular values in an increasing sequence in the DB.
0xB213	Invalid table data format	Tabular values must have data type REAL for the TAB and data type DINT for the TAB_D.
0xB214	The data format of the new data set does not match that of the previously transferred data set	Ensure that all of the tabular values have the same data format.
0xB215	FM 458 does not respond	Check the communications connection and configuring.
0xB216	Table is too large	Transfer the table in sub-sets, i.e. either distribute tabular values over several DBs or after each partial transfer write new (additional) tabular values into DB and transfer.
0xB217	Table is not complete (X / Y values)	Complete the table, there must be a Y value for each X value.
0xB218	REQTAB is reset during processing	Transfer the tabular values again.
0xB219	REQDB reset during processing	Transfer the tabular values again.
0xB21A	DB number is not valid	Specify a valid DB number.
0xB21B	TIMEOUT when receiving the acknowledge telegram	Check the communications coupling and configuring. Transfer the tabular values again
0xB21C	Invalid processing status	Check the configuring of the WR_TAB.

The following errors can occur and are displayed at the ERROR output:

Errors associated with the SFC58 or SFC59 are displayed at the ERROR output.

3.18.2 Manual mode

3.18.2.1 Application

The "Manual mode" mode represents the simplest way of inserting tabular values into a configured software package. However, it is comparatively time consuming as data has to be manually entered or taught-in from the program.

Entering tabular After the TAB or TAB_D has been correctly configured, the tabular values can be entered one after another. To start off with, the table size, i.e. the number of value pairs (=points) should be specified at input NP. If the table is to be saved in the SAVE area, then input SAV of the must be 1.

The tabular values can then be subsequently entered. In this case, to start, the index point i should be specified at input IP of the value pair to be entered. The X and Y value of the point should then be entered at inputs XP and YP. In order to accept the entered value, after entering each value pair, input WR should be set from 0 to 1. Before entering the next point, the index at input IP should be incremented. The values for this point should then be entered. This procedure is repeated until all of the values have been entered.

A specific sequence does not have to be observed when entering the individual points.

The number of entered points must match the data at input NP.

All of the entries during this procedure are transferred into the inactive table of the and are only available after being activated in the configured software. In order to activate the inactive table with the entered values, input TVL should be set to 1.

Additional changes can then be again made in the inactive table and are only available after this has been re-activated again.

In order to output the entered tabular values, after entering the data at input IP, the index of the point i, to be displayed is specified, and input RD is set from 0 to 1. The tabular values of point i are then displayed at the outputs YXP (X value) and YYP (Y value). The index of point i is output at output YIP.

3.18.2.2 Configuring

For the "Manual mode", only the TAB and/or TAB_D have to be configured depending on whether tabular values, data type REAL and/or DINT have to be managed. Each table may only contain values associated with one data type. If several tables having different data types are to be managed, then an TAB or TAB_D must be configured for each table.

The function blocks TAB and TAB_D should be configured in the same sampling time of 32ms. The following connection (I/O) settings are required:

- **AUT** = 0 (automatic mode de-activated)
- **NP** = [specifies the table size]
- **XP** = [enters the X values]
- YP = [enters the Y values]
- **IP** = [enters the value pair to be changed]
- **TVL** = 1 (to activate the table after all of the values have been entered)
- **WR** = 1 (to transfer the value pair which was entered in the table)
- **RD** = 1 (to display the value pair, specified under IP, at outputs YXP and YYP)

NOTE If, in the "Manual mode" the CTS connection is set to "0" when initializing (CTS=0; AUT=0), then it is no longer possible to changeover into the "Automatic mode: Memory card" (CTS=0; AUT=1). If the CTS connection is set to "0" while initializing, and the "Automatic mode: Memory card" is activated (AUT=1), then it is possible to subsequently changeover to "Manual mode" (CTS=0; AUT=0). The table, saved on the memory card, can then be processed in the "Manual mode". If, after this, a change is made back to "Automatic mode: Memory card" (CTS=0; AUT=1), this no longer has any effect, because it is only activated during the initialization operation. If a communications interface is configured at the CTS connection, it is possible to toggle, as required between "Manual mode" and "Automatic mode: Communications".

3.18.3 Automatic mode: Communications

3.18.3.1 Application with an S7 control and SIMATIC FM 458 application module

TransferringThe following prerequisites must be fulfilled in order to successfully
transfer tables:

- The function blocks TAB and/or TAB_D must be configured in the FM 458 application module corresponding to the configuring specifications for "Automatic mode: Communications" (A detailed explanation is provided in Section "Configuring for S7 control and SIMATIC FM 458 application module").
- The X and Y values of a table in a DB must always be present alternating. There must be a Y value for each X value, so that the number of values in a data set is always an integer number.

In order to start data transfer, inputs REQTAB and REQDB at WR_TAB must be set to 1. The tabular values of the DB, specified at input DBNUM at WR_TAB can then be transferred.

The actual number of transferred data blocks is always displayed at the CNTTEL output of the WR_TAB.

The number of data blocks is displayed at the TABTEL output of the WR_TAB, which is required until the complete contents of the DB are transferred to the SIMATIC FM 458 application module.

If the tabular values have been completely entered in the specified DB, or if it involves the last partial transfer of a table (sub-set of a table), which does not "fit" completely into a DB, then before starting the transfer, input LASTDB of the WR_TAB should be set to 1. This means that the SIMATIC FM 458 application module is signaled at the end of the data transfer. The STATUS output of the WR_TAB then changes from 2 to 0.

NOTE	All of the tabular values, which are located in the DB, specified at the DBNUM input of the WR_TAB, are always transferred.				
Table too large for a DB	If the table is too large for a data block, then the tabular values are split- up into individual sub-sets for transfer. The procedure is as follows:				
	To start, the first table section is written into the DB and is then transferred as described above. The LASTDB input of the WR_TAB remains at 0. The STATUS output of WR_TAB stays at 2 during data transfer and then changes, at the end of the table sub-set transfer (partial transfer) from 2 to 1.				
	The old tabular values in the DB should then be overwritten with the following tabular values. Once this has been completed, at WR_TAB the REQDB input should be again set from 0 to 1 to activate the next table sub-set transfer.				
	This procedure should be repeated until all of the tabular values have been transferred.				
	At the last sub-set transfer, input LASTDB of the WR_TAB should be set from 0 to 1. This signals the SIMATIC FM application module that data transfer has been completed. The STATUS output of the WR_TAB then changes from 2 to 0.				
NOTE	If there is adequate user memory available, the table can also be saved in several different DBs. In this particular case, for each table sub-set transfer, only the matching DB number at the input DBNUM of the WR_TAB has to be specified. However, it should be ensured that the DBs are transferred in the correct sequence, so that all of the tabular values are transferred in an increasing sequence.				
Data transfer duration	The time taken to transfer the tabular values depends on the following factors:				
	Number of tabular values				
	Size of the data blocks				
	 Sampling time of the TAB and TAB_D 				
	WR_TAB processing time				
	In each cycle, a telegram with 56 tabular values is transferred, from the control to the SIMATIC FM 458 application module.				
	The time taken for a table to be transferred can be calculated as follows:				
	Duration of the data transfer = [No. of tabular values / 56] * cycle time of the slowest FB (i.e. TAB, TAB_D or WR_TAB)				

The time taken for the data to be transferred via the P bus is not relevant for this estimation, as this data transfer time is generally less than 1ms and generally, the function blocks TAB and TAB_D are configured in sampling times which are greater than 32ms.

If a table is distributed over several data blocks, the time required increases. The reason for this is that in addition to the time taken to transfer the tabular values, which can be determined using the formula above, the user has to manually make the changes described above.

3.18.3.2 Configuring for S7 control and SIMATIC FM 458 application module

The following function blocks must be configured for the coupling between an S7 control and an SIMATIC FM 458 application module via P bus:

- SIMATIC FM 458 application module:
 - TAB (for REAL data type) and/or
 - TAB_D (data type DINT)
 - @CPB (P-bus coupling, central block)
- S7 control:
 - WR_TAB

Each table may only contain values associated with one particular data type. If several tables with different data types are to be managed, then an TAB or TAB_D must be configured for each table.

WR_TAB is used to transfer the tabular values from SIMATIC DB to function blocks TAB and TAB_D. The tabular values are transferred using a data telegram. When the last data telegram has been transferred, the TAB or TAB_D is automatically signaled that all of the tabular values have been transferred and that the table should be activated. WR_TAB receives a checkback signal as to whether activation was successful or not. After the table was successfully activated, its address is output at the TAB output of the TAB or TAB_D.

TAB and TAB_D TAB and TAB_D should be configured as follows:

They should be configured in a sampling time greater than or equal to 32ms. The following connection settings are required:

- **CTS** = [name of the configured communications interface]
- **AUT** = 1 (automatic mode activated)
- **US** = [channel name.address stage1] (address data for receive)
- **MOD** = [data transfer mode] (H=Handshake; R=Refresh; S=Select; M=Multiple)
- **TFT** = [monitoring time in milliseconds] (maximum telegram failure time

while receiving tabular values)

NP = [specifies the maximum table size]

NOTE If a communications interface is configured at the CTS connection, it is possible to toggle, as required between "Automatic mode: Communications" and "Manual mode".

WR TAB	The following of	connection settings should be configured at WR_TAB:
	LADDR =	[specifies the logical address of the SIMATIC FM 458 application module]
	RECNUM =	[specifies the data set number for the read and write channels. This must be identical with "Address stage1" at the US connection of the TAB or TAB_D.]
	DBNUM =	[specifies the data block number]

3.18.3.3 Inserting tabular values in the data block

In order to be able to transfer tabular values to a SIMATIC FM 458 application module, they must be available in a data block (DB). The DB should be programmed on the control side.

There are two ways of generating a DB with the required tabular values:

- Generating a new DB in STEP7 and manually entering the tabular values in the application "LAD/STL/CSF"
- Importing tabular values from an existing table (e.g. MS Excel) as external source in STEP7

3.18.3.3.1 Manually entering tabular values

In this case, it involves the simplest method of providing tabular values in a DB. It is realized by entering the initial (starting) and actual values of the individual table values manually in a newly generated DB in the application "LAD/STL/CSF". The steps required will now be explained.

NOTE The initial value is any value which can be defined for every tabular value. It is only used if there is no actual value specified for the associated tabular value. The actual value is that value which is made available as tabular value in the configured software. The required tabular values should be specified here.

(1) Generating a new DB under STEP7

To start, a new DB should be generated under STEP7. In this case, the "Blocks" folder is selected in the appropriate S7 program and in the context-sensitive menu, the entry "Insert new object \rightarrow data block" is selected.

The procedure is shown in the following diagram:

SIMATIC Manager - TAB_Test	
File Edit Insert PLC View Options Window Help	
▶≈≈ * • • • • • • • • •	E < No Filter > ▼
TAB_Test C:\Siemens\Step7\S7proj\TAB_Test	
TAB_Test FM458 CPU 412-2 DP Sources Cut Cut Copy Ctrl+X	
Paste Ctrl+V	
Delete Del	
Insert new object PLC Manage Multilingual Texts Rewiring Compare Blocks	Organization block Function block Function Data block Data type
Reference Data Check Block Consistency	Variable table
Print	>
Rename F2 Object Properties Alt+Return Special Object Properties	•
Inserts Data block at the cursor position.	

Fig. 3-70 Generating a new data block under STEP7

(2) Opening the new DB

The next step is to open the newly generated DB by double-clicking with the application "LAD/STL/CSF". "DB Editor" is the tool which is used to generate it and only one "Data block" is generated.

The following diagram illustrates the selection when opening a new DB:

New Data Block		×
Block: Programming Tool:	DB1	
Create		
O Data block		
C Data block refe	rencing a user-defined data type	
C Data block refer	rencing a function block	
Assignment		
I		
ОК	Cancel Help	

Fig. 3-71 Making a selection when generating a new DB

The energy		illustrated in	the fellowing	
The opened.	new DB IS	inustrated in	the lollowing	diadram:
				a.a.g. a

Kad/STL/FBI	Image: Contract of the second secon							
🖬 File Edit II	🖅 File Edit Insert PLC Debug View Options Window Help						_ B ×	
Address Na	me	Туре	Initial value	Comment				
0.0		STRUCT						
=0.0		END_STRUCT						
· 								
Press F1 to get He	Press Et to get Help.							
				í	19111119	1.00		

Fig. 3-72 Newly generated DB in the application "LAD/STL/CSF"

(3) Entering the tabular values

The required tabular values can now be entered. It should be ensured that the X and Y values are entered, alternating.

To start, the data type, used in the table, should be entered (REAL or DINT). In this case, the name is always "Data type", "WORD" type and initial value for data type REAL "W#16#1", for data type DINT "W#16#2".

Then, for each individual tabular value, the name, data type ("Type" column) and value ("Initial value" column) should be entered.

The procedure when entering tabular values, data type REAL, is shown in the following diagram:

Kad/STL/	🙀 LAD/STL/FBD - [DB1 TAB_Test\FM458\CPU 412-2 DP]					
💶 File Edit	🕞 File Edit Insert PLC Debug View Options Window Help					_ 8 ×
Address	Name	Туре	Initial value	Comment		
0.0		STRUCT				
+0.0	Datatype	WORD	W#16#1			
+2.0	xl	REAL	1.000000e+000			
+6.0	уl	REAL	5.000000e+000			
+10.0	x2	REAL	2.000000e+000			
+14.0	у2	REAL	6.000000e+000			
+18.0	x3	REAL	3.000000e+000			
+22.0	уЗ	REAL	7.000000e+000			
+26.0	x4	REAL	4.000000e+000			
+30.0	¥4	REAL	8.000000e+000			
=34.0		END_STRUCT				
Press E1 to ge						
ricos i i to ge	ssi i to get rep.					

Fig. 3-73 Manually entered tabular values in the "LAD/STL/CSF" application

HINWEIS Only values associated with the same data type may be included in a table. For this reason, specifying an ARRAY is an effective way of entering data. This means that the data type doesn't have to be specified each time. Refer to the online help of the application "LAD/STL/CSF" - especially "Help for STL" for the procedure to make entries for an ARRAY type.

(4) Saving the DBs

After the tabular values have been completely entered, the DB can be saved under "File \rightarrow Save". The tabular values are then located in the DB for transfer.

3.18.3.3.2 Importing tabular values

The tabular values, provided in the DB, can also be imported from an external source, e.g. an MS Excel table. However, the following points should be observed for error-free import:

- The source file of the table must have a specific format
- The source file must be linked-in as external source file under STEP7
- A new DB is generated from the external source file
- The necessary points and steps, required for the import operation, will now be explained.

Table formatIn order to import an existing table (e.g. generated using Excel) into the
DB, it must be compliant with a specific format syntax:

- The table must contain a header, which contains information about the name of the DB and the version.
- Information about the structure and the data type of the tabular values should then be specified.
- The tabular values are then specified (as initial values).
- It should be observed that X and Y values must always be specified, alternating.
- The table should be saved with the *.AWL extension.
- The table can then be used as external source file.

HINWEISThe *initial value* is any value which can be defined for each tabular
value. It is only used if an actual value is not specified for the
associated tabular value.
The tabular values are exclusively defined as *initial values*. Actual
values are not used.
This significantly reduces the file size and in turn, the required memory.

An example of a table with four X and four Y values, data type REAL is shown in the following diagram:

Fig. 3-74 An example of a table with values, data type REAL

An example of a table with two X and two Y values, data type DINT is shown in the following diagram:

Fig. 3-75 An example of a table with values, data type DINT

From Excel to STL The following sections explain, using examples, how to re-format an Excel table to obtain the required table format.

The file example, shown in the following diagram, is formatted step-bystep corresponding to the specifications of the required table format.

P B	eispieltabelle_		
	A	В	C 🔒
1	x-Wert	y-Wert	
2	1	5	
3	2	6	
4	3	7	
5	4	8	
6			
7			
8			
9			
10			
11			
12			
13	▶ ► Tabelle	e1 / Tabelle2 ◀	

Fig. 3-76 An example of a table in MS Excel

(1) Header

Initially, the required header is inserted. To do this, 5 lines are inserted at the beginning and the following data is entered:

- DATA_BLOCK DB 1 [number of the DB]
- TITLE = [enter as required]
- VERSION : 0.1 [version data]

P B	eispieltabelle.	_ 🗆 ×	
	A	В	C 🗖
1	DATA_BLOCI	K DB 1	
2	TITLE =		
3	VERSION : 0	.1	
4			
5			
6	x-Wert	y-Wert	
7	1	5	
8	2	6	
9	3	7	
10	4	8	
11			
12			
13	▶ ▶ \ Tabelle	1 / Tabelle 🔳	

The Excel table with inserted header is shown in the following diagram:

Fig. 3-77 An example of a table in MS Excel with inserted header

(2) Insert structure and tabular values

In a next step, the structure of the tabular values and the values, specifying the data type, are inserted. In this case, two lines plus an initial and end line are inserted for each value pair. Furthermore, a line is inserted at the start to specify the data type used.

The start of the structural data is displayed in the starting line with the "STRUCT" entry. The data type, used in the table, is specified in the following line ("W#16#1" for data type REAL, "W#16#2" for data type DINT).

This is followed by the structural data and tabular values for the individual value pairs, where X and Y values are always entered alternating. The tabular values are specified corresponding to the data type used (in this case REAL). The end of the structural data is displayed in the final line with the "END_STRUCT;" entry.

Finally, only the data for the data section of the actual values has still to be specified ("BEGIN" and "END_DATA_BLOCK"). As the tabular values already have the structural data in the starting (initial) values, it is not necessary to specify the individual actual values.

S B	eispieltabelle_	03.xls	_	
	Α	В	С	
1	DATA_BLOC	K DB 1		
2	TITLE =			
3	VERSION : 0	.1		
4				
5				
6	STRUCT			
7	Datatype := V	V#16#1 ;		
8	x1 : REAL	:= 1.000000e	+000;	
9	y1 : REAL	:= 5.000000e	+000;	
10	x2 : REAL	:= 2.000000e	+000;	
11	y2 : REAL	:= 6.000000e	+000;	
12	x3 : REAL	:= 3.000000e	+000;	
13	y3 : REAL	:= 7.000000e	+000;	_
14	x4 : REAL	:= 4.000000e	+000;	
15	y4 : REAL	:= 8.000000e	+000;	
16	END_STRU	СТ;		_
17	BEGIN			
18	END DATA	BLOCK		
19				
20				
21				
22		e1 / Tabelle 🔳		

The Excel table with inserted structural data and tabular values is shown in the following diagram:

Fig. 3-78 Example of a table in MS Excel with inserted structural data and tabular values

(3) Saving as STL [AWL] file

Finally, the correctly formatted file only has to be saved as text file with the extension *.AWL. In this case, the following should be selected in MS Excel "File \rightarrow Save as...". "Formatted text (separated by blanks) (*.prn)" file type should be selected and the table example should be saved under a freely selectable name and location.

"Save as" window in MS Excel with the appropriate selection is shown in the following diagram:

Speichern unter	? ×
Speichern in: 🔁 Daten (E:)	
Recycler	<u>S</u> peichern
	Abbrechen
	Optionen
Dateiname: Beispieltabelle.prn	
Dateityp: Formatierter Text (Leerzeichen getrennt) (*.prn)	

Fig. 3-79 An example of a table in MS Excel saved as text file (*.prn)

After the file has been saved, the file type should be changed from *.prn to *.awl. This file can then be opened with any text editor.

The following diagram shows the table example as STL [AWL] file, opened in the standard Windows text editor:

📱 beispieltabelle.awl - Editor 📃 🗖 🗙
<u>D</u> atei <u>B</u> earbeiten <u>S</u> uchen <u>?</u>
DATA_BLOCK DB 1 TITLE = Version : 0.1
STRUCT Datatype : Word := W#16#1 ; x1 : REAL := 1.0000000e+000; y1 : REAL := 5.000000e+000; x2 : REAL := 2.000000e+000; y2 : REAL := 6.000000e+000; x3 : REAL := 3.000000e+000; y3 : REAL := 7.000000e+000; x4 : REAL := 4.000000e+000; y4 : REAL := 8.000000e+000; U4 : REAL := 8.000000e+000; END_STRUCT; BEGIN END_DATA_BLOCK

Fig. 3-80 Table example, saved as *.awl file, opened in the text editor

This file can only be used as external source file in STEP7 for a DB.

Incorporating the table as source file Using the file example "BEISPIELTABELLE.AWL", generated above, the individual steps to incorporate an externally generated table in a DB will now be explained.

HINWEIS In addition to specifying the tabular values, it is especially important to specify the name of the DB. A DB is subsequently generated using the name specified in the file. In the above file example, "DB1" is specified as DB name in the first line. (refer to Fig. 10)

> Now, an external source is inserted in the STEP7 configured software in the S7 program under "Sources". After selecting "Sources", the contextsensitive menu can be called-up by clicking in the righthand partial window with the righthand mouse key. An external source should be inserted here as new object.

The procedure is shown in the following diagram:

Fig. 3-81 Inserting an external source in STEP7

The STL [AWL] file, generated above, is selected as source file. The following diagram shows the file selection window:

Insert external source				
Suchen in:	🗹 Desktop 🔽 🖛 🛍 (* 🎟 🕇		
🖄 Eigene Da	teien			
🛛 🖳 Arbeitspla	tz			
Netzwerk	umgebung			
💌 beispieltal	pelle.awl			
- ·		—	_	
Dateiname:	beispieltabelle.awl	Offne	n	
Dateitup:	Sources (* awl:* ar7.* sol.* ipp.* za.* sda.* sd	Abbrec	hen	
o atokyp.	oburdes (.dwi, .grz, .sci, .inp, .zg, .sug, .su			

Fig. 3-82 Selecting the file to be inserted in STEP7 as external source

The selected file is opened (in this case: BEISPIELTABELLE.AWL). It now exists as source file in the configured software under "Sources". It is selected there and is opened.

The file example, available under "Sources" and its context-sensitive menu is shown in the following diagram:

i.	File Edit Insert PLC View Options	Window Help			
			主 < No	Filter > 🔽 🏹 🔡 🧾 🕅	
I	🛃 TAB_Test C:\Siemens\Step7\S	7proj\TAB_Test			
	🖃 🖶 TAB_Test	beispieltabelle			l
1	⊡~∰ FM458	Open Object	Ctrl+Alt+O		
	E 📓 CPO 412-2 DP E 🗊 S7 Program(1)	Cut	Ctrl+X		l
	Sources	Сору	Ctrl+C		
	Blocks	Paste	Ctrl+V		l
		Delete	Del		l
		Insert new object	+		l
		PLC	+		l
		Manage Multilingual Texts	•		l
		Compile	Ctrl+B		l
		Export Source			
		Print	•		
	<u> </u>	Rename	F2		
		Object Properties	Alt+Return		
		Special Object Properties	•		
					1
Î	Opens selected object.				1

Fig. 3-83 Generated source file in STEP7
After the file has been opened, it can be edited in the "LAD/STL/CSF" program. There it can be compiled via "File / Compile".

KAD/STL/FBD - beispieltabelle		
File Edit Insert PLC Debug View Options W	indow Help	
New	Ctrl+N	
Open	Ctrl+O	
Open ONLINE	Ctrl+F3	
Close	Ctrl+F4	
Save	Ctrl+S	
Save As		
Properties		
Check and Update Accesses		
Check Consistency	Ctrl+Alt+K	
Compile	Ctrl+B	
Generate Source	Ctrl+T	
Print	Ctrl+P	
Print Preview		
Page Setup		
Print Setup		
1 TAB_Test\FM458\CPU 412-2 DP\\beispieltabelle		
2 TAB_Test\FM458\CPU 412-2 DP\\DB1-Off		
3 TAB_Test\FM458\CPU 412-2 DP\\beispieltabelle		
4 1A6_1650(FM456)CP0 412-2 DP((OB1-OF		
Exit	Alt+F4	(Sources beispieltabelle
1: Error (2: Info/		
Compiles the current source into executable code.		offline Ln 1 Cn 1

The procedure is shown in the following diagram:

Fig. 3-84 Compiling the source file in the "LAD/STL/CSF" application

After the file has been successfully compiled, a new DB is available in the configured software. The name of the DB corresponds to the name specified in the header line of the file.

SIMATIC Manager - TAB_Test				
File Edit Insert PLC View Options Window Help				
D <mark>≥</mark> ₽₩ X BB M 9 L 5	📰 🧰 🧲 🛛 🛛 🕬 🖿		- 🏹 🔡 🧐	N?
TAB_Test C:\Siemens\Step7\S7proj\TAB_Test				
🕞 🔿 TAB_Test 🕢 🖬 OB1 📲	DB1			
Ē∰ FM458	Open Object	Ctrl+Alt+O		
□ CPU 412-2 DP	Cut	Ctrl+X		
S7 Program(1)	Сору	Ctrl+C		
Blocks	Paste	Ctrl+V		
	Delete	Del		
	Insert new object	•		
	PLC	•		
	Manage Multilingual Texts	•		
	Compare Blocks			
	Reference Data	+		
	Print	•		
	Rename	F2		
P	Object Properties	Alt+Return		
	Special Object Properties	•		
Opens selected object.				1.

The following diagram illustrates the newly generated DB in STEP7 configured software under "Blocks":

Fig. 3-85 Newly generated DB after compiling the source file

In order to check the contents of the DBs, it can be opened in the "LAD/STL/CSF" program. "Data view" should be selected in the "View" menu to display the initial (starting) values as well as the actual values.

Kad/STL/	'FBD - [DB1 TAB_	Test\FM458\CPU 412	-2 DP]			
File Edit	File Edit Insert PLC Debug View Options Window Help					
				<u> </u>		
Address	Name	Туре	Initial value	Comment		
0.0		STRUCT				
+0.0	Datatype	WORD	W#16#1			
+2.0	xl	REAL	1.000000e+000			
+6.0	уl	REAL	5.000000e+000			
+10.0	x2	REAL	2.000000e+000			
+14.0	у2	REAL	6.000000e+000			
+18.0	х3	REAL	3.000000e+000			
+22.0	уЗ	REAL	7.000000e+000			
+26.0	x4	REAL	4.000000e+000			
+30.0	у4	REAL	8.000000e+000			
=34.0		END_STRUCT				
L.						
TAB Test\I	M458\CPU 412-2	DP\S7 Program(1)\]	Blocks\DBl			
	N 1. Ever (2. 184- (
			,			
Press F1 to gel	t Help.			오 offline	Abs Insert	

The contents of the opened DB is illustrated in the following diagram:

Bild 3-86 Contents of the newly generated DB in the "LAD/STL/CSF" application

3.18.3.3.3 Subsequently downloading tabular values into a DB

If tabular values are to be subsequently downloaded into the DB, because the table is too large and there is not sufficient user memory for several DBs, then the table should be transferred to the SIMATIC FM 458 application module in several sub-sets of the table. To do this, the table must be split-up into sub-sets of the table. The size of the individual sub-set tables should be selected so that the user memory of the S7-CPU is not exceeded. The individual table sub-sets are then transferred one after another.

HINWEIS It is especially important that the individual table sub-sets are transferred in the sequence of the value pairs. If they are transferred in the incorrect sequence, then the tabular values will not be correctly available in the configured software.

There are two possibilities:

- Manually enter the individual tabular parts at the DB in the "LAD/STL/CSF" application and then transfer this part of the table
- Generate individual source files with different names for each table sub-set and after being successfully linked-into the DB one after the other, then transfer
- **Manual entry** In order to subsequently download tabular values into a DB manually, the following steps should be carried-out:
 - The appropriate DB should be opened by double-clicking in the "LAD/STL/CSF" application.
 - The existing tabular values should be replaced by entering the value of the subsequent tabular section.
 - The DB should be saved.
 - The values of the table sub-sets can now be transferred.

Generating several
source filesThe following steps have to be carried-out when subsequently
downloading tabular values into a DB by generating several source files:

- The same DB name should be specified in the header of the individual source files (*.AWL).
- The individual files may not exceed the memory size of the DB.
- The file names are best numbered in an increasing sequence.
- The individual files are now linked-in as source files as described above. However, they are still not compiled.
- The first source file is compiled and the tabular values, now available in the DB, transferred.
- The second source file is compiled so that its tabular values are now available in the DB. These are now transferred to the S7 control system.
- Analog to this, the other source files are compiled and transferred one after the other.
- After the last table sub-set has been transferred, the LASTDB connection should be set from 0 to 1. This signals that the table has been transferred.

3.18.3.4 Structure of the data telegram for TCP/IP or DUST1 connection

If the communications link involves a TCP/IP or DUST1 coupling, then the data telegram structure must be carefully observed. This is described in the following. The data telegrams are "generated" using the function blocks CTV and CRV.

The data telegram is defined so that all of the tabular values can be transferred in a data block as well as in several data blocks.

Data type	Description
char [4]	Telegram ID Each table telegram is identified with the "TAB0" ID
u_int16	Telegram commands (bit-coded) 1: New table (rising edge, from 0 -> 1) 2: End of table
u_int16	Data format (REAL=1, DINT=2)
u_int32	No. of the actual data block
u_int32	No. of tabular values (X and Y values) The number of values must always be an even number. This means that always the same number of X and Y values are transferred.
u_int32 [56] / float [56]	Array with tabular values. (X and Y values, always alternating)

The structure of a data block is shown in the following table:

The TAB or the TAB_D sends an acknowledgement to the sender for each data block received.

The structure of the acknowledge telegram is shown in the following table:

Data type	Description			
char [4]	Telegram ID Identifies each table telegram with the "TAB0" ID			
u_int32	No. of the actual data block			
u_int32	Status / error numbers			
	0xB210 OK (data block is o.k.)			

HINWEIS

New table data is now transferred into the inactive table if the "New table" command is set. After the "End of table" command has been received, all additional

table data are rejected until the "New table" command is received.

3.18.4 Automatic mode: Memory card

Table values can be combined to form components using the D7-SYS additionalComponentBuilder (this is included in D7-SYS V5.2 plus SP1). These components can be downloaded as additional objects on the memory card. From there, they are read-out using the TAB or TAB_D function blocks.

One or several table files are imported in the D7-SYS additionalComponentBuilder, which then combines these files to form a component file (download file), which can then be downloaded onto the memory card.

The D7-SYS additionalComponentBuilder (aCB) does not check the contents of the files. The tables are an exception to this rule. The contents of these table files are checked. If the table file has an erroneous structure, then aCB immediately flags this.

The procedure from generating a table file up to configuring the function blocks is explained in the following sections using an example.

3.18.4.1 Generating a table file in the csv format

X Mic	rosoft Excel	- Table1.xls				- 🗆 ×	XM	crosoft Excel -	Table2.xls				- 🗆 🗵
1 🔁 Е	le <u>E</u> dit ⊻iew	Insert Form	iat <u>T</u> ools <u>D</u> ata	a <u>W</u> indow <u>H</u> elp		_ 8 ×	1	Eile Edit View 1	nsert F <u>o</u> rmat <u>T</u>	ools <u>D</u> ata <u>W</u> i	indow <u>H</u> elp		_ 8 ×
Πn α	2 🔲 🚑	lg 🚓 🦹	🗈 🖻 🝼	ю - сı - (💄 🕐 Σ f*	? »		🛩 日 🎒 🕻	X 🖤 🐰 🗈	🛍 ダ 🖾	+ Cii + 🝓 🕻	🚰 Σ f *	2 ×
- Oriol		- 10 -			50 m A		Aria		• 10 • B	<i>1</i> Π ≡		· · · · · · · · · · · · · · · · · · ·	A »
Ana		- 01 -	D 1 U		≞ ⊡ • <u>∽</u> •	· 📤 •			1	· • =		ш : <u>«</u>	
	A1	- =	1					622		<u>^</u>	5	-	
	A	В	C	D	E	_		A	В	U	U	E	_
1	1.00	1.00]				1	-1	1				
2	1.10	1.21	1				2	-0.9	0.81				
3	1.20	1.44	4				3	-0.8	U.64				
4	1.30	1.69	9				4	-0.7	0.49				
5	1.40	1.96	j				5	-0.6	0.36				
6	1.50	2.25	2				0	-0.5	0.25				
	1.60	2.58	0				6	-0.4	0.10				
8	1.70	2.85	•					-0.3	0.09				
9	1.80	3.24	4	-			10	-0.2	0.04				
10	1.90	3.6					10	-U.1 1 20770E 16	1 015025 20				
12	2.00	4.00	1				12	-1.30770E-10	1.32333L-32				
12	2.10	4.4	4				12	0.1	0.01				
1.1	2.20	4.04 5.00	+				14	0.2	0.04				
14	2.30	5.23	2				14	0.3	0.05				
16	2.40	6.24	5				16	0.4	0.10				
17	2.30	0.20	,				17	0.5	0.23				
18							18						
	N) Table1	/			+			N N Table2 (141	L	
	- M (rabler	/						r rablez /					
Ready					JUM		Read	ay			I NUM		

The table values are generated as required using a table calculation program (e.g. Excel).

Fig. 3-87 Tables values in Excel

The table files must fulfill the following conditions:

- Conditions
- A table file may only comprise two columns if additional columns are included in the table, an error message is displayed in a dialog window.
- Both of the columns must contain the same number of values. If this is not the case, then the D7-SYS additionalComponentBuilder displays an error message in a dialog window and the table values are rejected.

The D7-SYS additionalComponentBuilder expects the following data format:

- [+/-] xxx.yyy real value, decimal places are specified using a "." (e.g. 145.123)
- [+/-] xxx,yyy real value, decimal places are specified using a "," (e.g. 145,122)
- [+/-] xxx.yyyE+/-mm real values shown as an exponent, decimal places are specified using a "." (e.g. 145.122E+12)
- [+/-] xxx,yyyE+/-mm real values shown as an exponent, decimal places are specified using a "," (e.g. 187,122E+12)

For the "Table DINT" type description:

• [+/-]xxx – Integer or double integer (e.g. 145)

The following conditions still apply for the table files:

- ASCII files
- The table columns are separated using a semicolon or tab character
- Lines are separated using a line break or semicolon

Saving tables

Tables, which are generated using MS Excel and are saved in the *.csv format or as "Text (Tabs separate)" fulfill these conditions.

The following diagram shows two example files with table values which were saved in the csv format:

📓 Table1.csv - Notepad	- 🗆 🗵	🜌 Table2.csv - Notepad	
<u>File Edit Search H</u> elp		<u>File E</u> dit <u>S</u> earch <u>H</u> elp	
1,00;1,00		l-1;1	
1,10;1,21		-0,9;0,81	
1,20;1,44		-0,8;0,64	
1,30;1,69		-0,7;0,49	
1,40;1,96		-0,0;0,30	
1,50;2,25		-0,5;0,25	
1,00;2,50			
1,70;2,89			
0.0.0		-0,1,0,01	
2,00,4,00		8 1.8 81	
2,10,4,41		0.2.0.04	
2 38.5 20		A_3:A_A9	
2-40:5-76		0.4:0.16	
2.50:6.25		0.5:0.25	

Fig. 3-88 Table values which were separated using semicolons (*.csv format)

3.18.4.2 Working with the D7-SYS additionalComponentBuilder

After the table files were saved in the csv format, they can be imported in the D7-SYS additionalComponentBuilder.

Fig. 3-89 D7-SYS additionalComponentBuilder

In the next step, a new component file is set-up with \Box . To start, the properties are specified in the following dialog field.

New component

operties		
- Component versio D7-SYS version	n version 4.0 R07/98 or newer	
Component type		
Component type	USER	×
Type description	Table REAL	*

Fig. 3-90 Setting the properties

The following settings should be made:

These properties cannot be changed at a later time and have a gray background.

• D7-SYS version

List box, in which the version is specified for which the components should be generated

Component type

List box with the fixed entries "USER", "IT1" and "IT2". "USER" is the default value

The entries have the following significance:

- USER = Component file generated by the user, e.g. table files
- IT1/IT2 = System component file for ITSP modules

• Type description

List box with the "Table REAL" and "Table DINT" entries. "Table REAL" is the default value for the "USER" component type. "Table DINT" is used for tables in the DINT format.

The entries have the following significance:

- REAL table: Table file with REAL data type
- DINT table: Table file with double integer data type

A new type description can be entered in the list box and acknowledged using RETURN. This new type description is then transferred into the list box and can be selected from the list box the next time.

The new component file can be set-up after the settings have been Saving completed. The new component file is, as standard, set-up in C:\temp. If another memory path is specified, then when the program re-starts, this is used

> ? X Save Save in: 🔄 Table - 🗈 🗹 📸 🔳 ₀cs Tabelle.br3 File <u>n</u>ame Save Cancel Save as type: br3-files (*.br3) -

Fig. 3-91 Saving the new component file

Table files can now be added. A file selection window is opened using

as standard memory path.

with which the required table files can be selected.

NOTE Only tables with a uniform value format can be included in a component with the "table" type description! This means that a REAL table only contains tables with REAL values.

> The following diagram shows the contents of the D7-SYS additionalComponentBuilder after importing the two generated table files:

Fig. 3-92 D7-SYS additionalComponentBuilder with imported table files

Additional table files can be added or imported or deleted at any time. The D7-SYS additionalComponentBuilder automatically takes-over the management of the table files and saves the modified component files.

Opening When opening existing components, "C:\temp" is the standard search path of the D7-SYS additionalComponentBuilder. If another path is selected, when the program re-starts, this is used a standard search path.

3.18.4.3 Downloading

After the component file was set-up with the D7-SYS additionalComponentBuilder, it can be downloaded into the general download dialog box.

(1) Opening the download dialog box in D7-SYS with "target system \rightarrow Download"

Using this dialog box, the current configuring can download the optional components into a memory card (offline/online).

Load					×
T. Ci	arget system: PU:	SIMADYN D 1 PM5			
Exter	Only user program			additional	
c	only individual SFC	Jylan	7		
- Load ©	ing process Offline (OmniDrive) Online (COM1)		🗖 Initi	al load	
Load	d Canc	el	nfo	Help	

Fig. 3-93 Download dialog box via target system → Downloading into D7-SYS

(2) Opening the dialog box for optional components

A maximum of 2 components can be selected. A file can be selected for the selected components by clicking on the "NEW" button.

additional load	×
IT1 IT2	Close
	New
	Delete
	Help

Fig. 3-94 Selection dialog box for optional components, e.g. table data

(3) A file selection dialog box opens to select additional components

The component file, previously created using the D7-SYS additionalComponentBuilder, is now assigned the component IT1 and during the next download operation, is written into the memory card.

load new file			<u>? ×</u>
<u>S</u> uchen in:	🔁 Table	- 🗢 🔁	💣 🎟 •
🚾 Table.br3			
, Datei <u>n</u> ame:	Table.br3		Ö <u>f</u> fnen
Datei <u>t</u> yp:	Load-objects (*.br3)	-	Abbrechen
	Schreibgeschützt öffnen	_	

Fig. 3-95 Downloading a component file

3.18.4.4 Configuring the function blocks

For the "automatic mode, memory card" mode, only the TAB and/or TAB_D function blocks must be configured, depending as to whether table values, REAL data type and/or DINT data type have to be managed. Each table may only contain values of one data type. If several tables are to manage various data types, then a TAB or TAB_D should be configured for each table.

The TAB and TAB_D function blocks should be configured in a sampling time greater than or equal to 32ms. The following connection settings are required:

CTS= 0

- US = Not assigned
- **NAM =** Name of the table file (with file name extension which was defined when "saving", e.g. MS Excel)
- AUT = 1 (automatic mode activated)

The configuring is shown in the following diagram:

Fig. 3-96 Configuring the TAB function block

The table function blocks for 2 tables are shown in the following diagram. The table values, which are now managed by the function blocks, can now also be used by additional function blocks, e.g. FB TABCAM.

Fig. 3-97 Configuring example

3.19 Parameter access technique for D7-SYS

3.19.1 General description of the parameter functionalityinformation

By appropriately parameterizing using operator control devices for parameters at the block I/O:

- Reading values
- Changing values
- Changing values and saving in the CPU change (cache) memory
- Changing interconnections using BICO technology
- Changing interconnections and saving in the CPU change (cache)
 memory
- Reading parameter descriptive elements

Hardware
platformsYou can be used for the Parameter access technique following hardware
platforms:

- T400 technology module
- Application module FM 458
- SIMADYN D standard CPUs
- **NOTE** Masterdrives operator control devices, for example, OP1S or "DRIVE ES"/"DRIVE Monitor" can be used for parameterization.

3.19.1.1 Parameters

When the parameter access technique for D7-SYS you designate block inputs or outputs as parameter.

There are two types of parameters:

- Monitoring parameters
 - These can be configured at the inputs and outputs of blocks
 - Values can only be read.

	Setting parameters
	 are configured at block inputs
	 values can be read, changed and saved in the change memory.
	 interconnections to other blocks can be changed using BICO technology
NOTE	You cannot change parameter values if \$ signals or virtual connections are configured at the block inputs.

Connection data	You can configure the following D7-SYS connection data types of the
types for	blocks as parameter:
parameters	

D7-SYS connection data type in CFC	Bool	Integer	Double Integer	Word	Real	SDTime
Parameter data type in the parameter description	O2	12	14	V2	14	14

Configuring	A maximum of 2000 different parameters are available. Each parameter
parameters	may only be assigned once. Parameters are configured in CFC as follows:
	TOHOWS.

Designate the block connection using a pseudo comment $@\mathsf{TP_bnnn},$ with

- b: range identification "H", "L", "c" or "d"
 - designates the number range
 - "H" or "L": I/O can only be read and changed
 - "c" or "d": Connections can only be read
- nnn: three-digit parameter number
 - 000 to 999

NOTEs	 A parameter number may only be assigned once (checked using the CFC).
	 A pseudo comment may not be configured at a chart interface connection.
	 A pseudo comment may not be configured at a block connection in a chart, which is to be compiled as block type.
	 No more than one parameter may be configured as pseudo comment per block connection.
	 A comment can include several pseudo comments, separated by blanks, followed by a "standard" comments text, e.g.

"@TP_H089 @DATX ...".)

Accessing
parametersYou can externally access parameters (e.g. from a higher-level control
system such as SIMADYN D) as follows:

Pseudo comment	T400 Techboard	T400 baseboard / CPU modules in SIMADYN D subracks	Can be configured at connection	Connection	Significance
	Display operator	Display operator	O: Output		
			I: Input		
@TP_dxyz	dxyz	rxyz	A/E	Any	Monitoring parameter
@TP_cxyz	схуz	nxyz	A/E	Any	Monitoring parameter
@TP_Hxyz	Hxyz	Pxyz	E	None or OP connections	Setting parameter
@TP_Lxyz	Lxyz	Uxyz	E	None or OP connections	Setting parameter
@TP_Hxyz	Hxyz	Pxyz	A	Any	Monitoring parameter
@TP_Lxyz	Lxyz	Uxyz	A	Any	Monitoring parameter

Legend

xyz:	Parameter number
any:	Interconnected or not interconnected .
OP connection:	Interconnected using global operands.

3.19.1.2 **BICO technology for SIMADYN D**

With MASTERDRIVES operator control devices, with BICO technology you can change interconnections between blocks. You can change configured software without using the CFC. You can change interconnections on a T400 technology board, Application module FM 458 or CPU module in a SIMADYN D subrack. BICO technology and the CFC test mode should not be used DANGER simultaneously. If you make online changes in the CFC test mode, then you must first re-compile before you use BICO technology. Changes made in the CFC only become effective on the display of the operator control device after compilation. If changes were made using BICO technology without saving them in the CPU change memory, then data consistency between the changes on the CPU and your configured software on the PC/PG are no longer guaranteed, and can no longer be established by updating the project. If you wish to avoid this inconsistent condition, you must first RESET the module before you use CFC in the test mode NOTE If you have made interconnection changes using BICO technology, and

then you activate the CFC test mode, a warning is displayed in the form of the "different software release" dialog box.

Data types for technological connectors

Configuring

connectors

technological

You can configure the following D7-SYS connection data types of the blocks as technological connectors:

D7-SYS connection data type in CFC	Bool	Integer	Double Integer	Word	Real	SDTime
Data type of the technological connector in the parameter description	02	12	14	V2	14	14

In order that you can change interconnections between blocks using BICO technology, you must, in addition to the parameters, still configure technological connectors at block outputs in the CFC. You can use block outputs with technological connectors to change the interconnection using BICO technology.

Technological connectors are configured as follows:

Designate the block output with a pseudo comment @TC nnnn, with nnnn: four-digit technological connector number 0000 to 9999

NOTES	 No more than one technological connector may be configured as pseudo comment per block output. 				
	 A technological connector number may only be assigned once (checked using CFC). 				
	 It is not permissible to configure a technological connector at a plan interface connection. 				
	 It is not permissible to configure a technological connector at the connection (I/O) of a block in a chart, which is to be compiled as block type. 				
	 A comment can include several pseudo comments, separated by blanks, followed by "standard" comments text, e.g. "@TC_1389 @TP_H345 				
Reading	You can read a parameter and output the value using an operator control				
parameters	The output value corresponds to:				
	 for block I/O, interconnected with technological connectors, the number of the technological connector @TC_nnnn 				
	 for block I/O which are not interconnected, the value of the block input or output 				
	From the parameter documentation of a standard software package, you can identify whether the output value represents the number of a technological connector or the value of the block input. It is not possible to make this differentiation at the operator control device display.				
Changing interconnections using BICO	Using BICO technology, you can only change existing interconnections between blocks, if these interconnections are configured as follows in the CFC:				
technology	 technological connectors @TC_nnnn are configured as pseudo comments at the block output, 				
	 parameter @TP_Hnnn or @TP_Lnnn is configured as pseudo comment at the input of a block, 				
	 the blocks are interconnected by connecting an input with pseudo comment @TP_Hnnn or @TP_Lnnn and an output with pseudo comment TC_nnnn. 				
	The interconnection is changed using BICO technology, by entering, at the operator control device, the number of another technological connector @TC_nnnn as parameter value.				

- The maximum number of interconnections of different inputs which are changed with BICO technology, which are saved in the change memory, are, for
 - technology module T400: approx. 1600
 - Application module FM 458: approx. 400
 - CPU module in the SIMADYN D subrack: approx. 400
 - Using BICO- technology, you can only change existing interconnections between block I/O, but you cannot delete them.
 - Using BICO technology, you cannot establish a new interconnection at inputs which are not connected.
 - Changes made to the interconnections of block I/O using BICO technology, are only effective when updating the project in the CFC, if they were saved.
 - For changes made to the interconnections of block I/O using BICO technology, when type checking the connections, the same rules apply as for CFC.

CAUTION

The pseudo comment @DATX is not supported by the CFC test mode. When changing an interconnection, where @DATX is available as pseudo comment at the block input, the value for this connection is updated again, but still maintaining the data consistency mechanisms. Thus, the pseudo comment @DATX is no longer valid.

Remedy: Re-compile and re-load the user program.

Examples

Interconnection possibilities using BICO technology and their significance:

Pseudo-	Con- nection-	Inter- connected	Processed at the operator control device		
comment	Туре	with	Read	Write	
@TP_L/H	1	Standard	Display value	Not possible	
@TP_L/H	1	Flag	Display value	Change value	
@TP_L/H	1	\$ signal	Display value	Not possible	
@TP_L/H	I	Virtual inter- connection	Display value	Not possible	
@TP_L/H	I	—	Display value	Change value	
@TP_L/H	I	@TC_	Display the number of the @TC_	Interconnect to a new number of @TC_, if present	
@TP_c/d	1	Any	Display value	Not possible	
@TP_c/d	1	@TC_	Display value	Not possible	
@TP_L/H	0	Any	Display value	Not possible	
@TP_c/d	0	Any	Display value	Not possible	
@TC_	1		Error message when compiling in the CFC		
@TC_	0	_	Source for interconnection using BICO technology		

Legend

Parameter @TP_Lnnn or @TP_Hnnn
Parameter @TP_cnnn or @TP_dnnn
Technological connector @TC_nnnn
The output is not a flag, not a \$ signal and is not a virtual interconnection.
Interconnected or not interconnected.
No interconnection.

Interconnections extending over different tasks The number of newly generated interconnections between different tasks using BICO technology is limited. The largest of the following values applies for your application:

- Value 20
- 20 % of the already configured number of interconnections between tasks
- 0.25 \times number of the @TC_... technological connectors configured in task n.

3.19.1.3 Status-dependent parameter changes

If selected parameters are only to be changed when the system is in specific statuses, then you can configure the following functions blocks:

- Function block PSTAT
 - to configure a device status
 - by entering a password with the authorization level enabled
- Function block PLIM
 - defines the statuses and access levels in which a parameter may be changed

Additional information

on function blocks, refer to the Reference Manual "SIMADYN D Control system, Function Block Library".

3.19.1.4 Identifying SIMADYN D components

Reserved	To identify components, "DRIVE Monitor" evaluates technology
parameters	parmeters d998 (1998) and d999 (1999).

d998	Device	Special feature	
80	SIMADYN D, general	The parameter range, especially extended for SIMADYN D up to 16 * 2000 parameters, applies.	
		Parameters are possible in the basic device parameter range (0 999). This means, an identification can result in a random product if a parameter just by chance coincides with the identification parameter and value of a drive converter/inverter.	
134	T400 /	Parameter range = technology parameters (1000 1999; 3000 3999)	
134	FM 458/ SRT400	 Parameter ranges, the function can be set at the central FB BASEBOARD: 0 999; 2000 2999 TECUROARD: 4000 4000: 2000 2000 	
	SK1400	 BASEBOARD: 0 999; 2000 2999 TECHBOARD: 1000 1999; 3000 3999 	

Procedure when	Prerequisite: The user selects SIMADYN D or SRT400 and goes online
identifying	with the device type.

Dependig on the selected device type, DriveMonitor checks the identification parameter d998. If the identification was successful, it is not checked as to whether another device can be recognized.

- 1. User selects SIMADYN D: If d998 = 80, then the identification routine is considered to have been successful.
- 2. User selects SRT400: If d998 = 134, then the identification routine is considered to have been successful. This means that the user can only address the technology, also independently of the basic device!

d999	Software	Examples
1AB	Angular synchronism, version A.Bx	$120 \rightarrow SPA440 V2.0x$
	(x is used to number compatible versions)	$123 \rightarrow SPA440 V2.3x$
2AB	Axial winder, version A.Bx	$221 \rightarrow SPW420 V2.1x$
ЗАВ	Cross-cutter/closed-loop shears control, version A.Bx	310 \rightarrow SPS450 V1.0x

The following is still valid: Parameter d999 is optional to identify the software version and release of standard software packages.

If the device identification is not successful, then an attempt is made to identify the known devices types.

If "DRIVE Monitor" recognizes a different software (d999), the "Create database" option is listed in the "Device identification" dialog box. This means that a specific database can be set-up.

3.19.1.5 Units and unit texts

In order that you can assign *units* (physical quantities) to an input or output, you must configure a text string for the block I/O from the table below.

Physical quantity	Units	Text string to be configured	
Length	Meters	m	
	Millimeters	mm	
	Kilometers	km	
	Micrometers	um	
Surface	Square meters	m²	
	Square millimeters	mm2	
	Square kilometers	km2	
Volume	Cubic meters	m ³	
	Liters	1	
Time	Seconds	S	
	Minutes	min	
	Hours	h	
	Days	d	
	Milliseconds	ms	
	Microseconds	us	
Force	Newton	Ν	
	Kilo newtons	kN	
	Mega newtons	MN	
Pressure	Pascal	Ра	
	Kilopascal	kPa	
	Millibar	mbar	
	Bar	bar	

Physical quantity Units		Text string to be configured
Length	Meters	m
	Millimeters	mm
	Kilometers	km
	Micrometers	um
Weight	Kilograms	kg
	Grams	g
	Milligrams	mg
	Tons	t
Energy, work	Joules	J
	Kilo joules	kJ
	Mega joules	MJ
	Watt hours	Wh
	Kilowatt hours	kWh
	Megawatt hours	MWh

Physical quantity	Units	Text string to be configured
Active power	Watts	W
	Kilowatts	kW
	Megawatts	MW
	Milliwatts	mW
Apparent power	Volt-ampere	VA
	Kilovolt-ampere	kVA
	Megavolt-ampere	MVA
	Millivolt-ampere	mVA
Speed	1 / second	1/s
	1 / minute	1/min
	1 / hour	1/h
Angle	Radian	rad
	Seconds	п
	Minutes	1
	(old) degrees	grad
	New degrees (Gon)	ngrad
Velocity	Meters / second	m/s
	Millimeters / second	mm/s
	Millimeters / minute	mm/min
	Meters / minute	m/min
	Kilometers / minute	km/min
	Millimeters / hour	mm/h
	Meters / hour	m/h
	Kilometers / hour	km/h
Volume flow	Cubic meters / second	m3/s
	Cubic meters / minute	m3/min
	Cubic meters / hour	m3/h
	Liters / second	l/s
	Liters / minute	l/min
	Liters / hour	l/h
Mass flow	Kilograms / second	kg/s
	Grams / second	g/s
	Tons / second	t/s
	Grams / minute	g/min
	Kilograms / minute	kg/min
	Tons / minute	t/min
	Grams / hour	g/h
	Kilograms / hour	kg/h
	Tons / hour	t/h

Physical quantity	Units	Text string to be configured	
Torque	Newton meter	Nm	
	Kilonewton meter	kNm	
	Meganewton meter	MNm	
Temperature	Kelvin	к	
	Degrees Celsius	С	
	Degrees Fahrenheit	F	
Enthalpy	Joule / Kilogram	J/kg	
	Kilojoule / Kilogram	kJ/kg	
	Megajoule / Kilogram	MJ/kg	
Voltage	Volt	V	
	Kilovolts	kV	
	Millivolts	mV	
	Microvolts	uV	
Current	Ampere	А	
	Milliampere	mA	
	Kiloampere	kA	
	Microampere	uA	
Resistance (electrical)	Ohm	Ohm	
	Milliohm	mOhm	
	Kiloohm	kOhm	
	Megaohm	MOhm	
Ratio	Percentage	%	
Absolute humidity	Gram / Kilogram	g/kg	
Frequency	Hertz	Hz	
	Kilohertz	kHz	
	Megahertz	MHz	
	Gigahertz	GHz	
Referred torque	Newton meter / ampere	Nm/A	
Acceleration	Meter / seconds	m/s2	
	Meter / seconds	m/s3	

3.19.2 Parameterizing on the Application module FM 458

3.19.2.1 Terminology

- EXM448 EXM 448 communications expansion module of the FM 458 application module
- CBP2
 COMBOARD/communications module for PROFIBUS DP

"DRIVE ES" or "DRIVE Monitor"
 Configuring software for drives and software for parameterization

3.19.2.2 Communications behavior

The FM 458 applications module can be configured in a SIMATIC S7-400 rack together with one or two communication expansion modules EXM 448. An option module, e.g. CBP2, can be inserted in the free slot X02. The CBP2 can be used to send and receive parameter tasks.

Fig. 3-98 Schematic diagram of the FM 458 application module with two EXM 448 communication-expansion modules

3.19.2.3 Generating the hardware configuration

You require the following hardware to parameterize the SIMATIC FM 458 modules:

- Subrack for S7-400
- Power supply module for the S7-400
- Central module (CPU) for S7-400
- FM 458 application module for SIMATIC S7-400
- EXM 448 communications-expansion module

Kommunikation Prozessperipherie Funktion Symbol Taktzähler Peripherie	C kein Steckmodul	
Funktion Symbol Taktzähler *EX34448_Cnt Peripherie *	 Kommunikation Prozessperipherie 	
Taktzähler *EXM448_Cnt Peripherie	Funktion	Symbol
Peripherie *	Taktzähler	* EXM448_Cnt
	Peripherie	×

In HW Config, the "Communications" plug-in module type must be activated for the properties of the EXM 448.

• CBP2 communications module (COMBOARD)

3.19.2.4 Functional scope

You must configure the following function blocks when parameterizing

with "DRIVE Monitor":

- Central block @FMPAR
 - monitors the COMBOARD
 - processes the parameter tasks
- Function block CBCONF
 - used to configure a COMBOARD
 - used to display the diagnostic data of a COMBOARD

You can configure the following function blocks for additional functions:

• Function block CBRFAW

To receive the alarms from a COMBOARD

• CRV

The receive block distributes values from a data interface to the block inputs of function blocks of the same CPU. Only max. 16 PZD words can be received and sent using a COMBOARD (e.g. CBP2).

• CTV

The function block only acquires and sends block output values from the CPU function blocks, on which it is configured.

3.19.2.5 Operator devices which can be connected

You can use the "DRIVE ES" or "DRIVE Monitor" configuring software to parameterize the FM 458 application module

3.20 Communications utility, display control

3.20.1 General description

Display devices	The communications utility, display control can control two types of display devices:
	OP2 operator control device
	 can display and change a maximum of 24 configured process data and maximum of 32 binary values
	 it can output SIMADYN D messages
	Digital display VD1
	 this can display a maximum of 24 configured process data
	The display devices communicate with SIMADYN D via the USS bus.
Function of the communications utility	The configured data defines which display device is supplied with which process data and binary values. Messages, when configured, are always transmitted per broadcast to all of the display devices via the USS bus. A selection is made locally at the OP2 as to which OP2 receives which messages for display. Further information on the OP2, refer to the OP2 User Manual.
	The format information for the process data and binary values is specified by the configured data. This information is transferred to a display device when this display is being initialized (e. g. after power-up). After the initialization phase, only the process data selected at the display device are cyclically transferred. For OP2, all of the binary values are also cyclically transferred.
	In this fashion, cyclic telegram data transfer along the USS bus can be maintained, so that display devices and drive units can be simultaneously handled on a USS bus.

3.20.2 Hardware

Requirements	Hardware required for the display control:
--------------	--

- USS master interface for SIMADYN D
 - CS7/SS4 or T400

(for a description of the USS bus refer to Chapter USS master coupling)

3.20.3 Software

Configuring The following must be configured to use a display device:

- @CSU central coupling block to commission the USS master coupling on CS7/SS4 or @USS_M on T400.
- @DIS central block to control one or several display devices on the USS bus.
- DIS... process data blocks for a display device to display and change any values, and/or
- Binary value blocks DISA1B, DISS1B for a display device to display and change binary values, and/or
- MSI standard message output blocks to output messages on an OP2.

NOTE The @DIS central block as well as all of the associated "DIS" process data- and binary value blocks must be configured on the same CPU in the same sampling time (recommended: 30..300ms). In order to be able to display or change process data and binary values from other CPUs at a display device, this data must be transferred using other mechanisms (\$ signals, process data communications).

Messages can be output, in parallel from several message output blocks, at all OP2 units. As a message output block (independent of @DIS) directly uses the USS coupling, these blocks can be configured on any CPU and in any sampling times.

Process data blocks, binary value blocks and message output blocks can be optionally configured. For instance, an OP2 can be exclusively used to output just messages.

3.20.3.1 Central block @DIS

General The @DIS central blocks control a maximum of 31 display devices via a USS bus.

Data entry at inputThe display system name is specified at input DIS. Using this name, the
process data- and binary value blocks reference to the display system.

The block sets-up, for each display device, one receive- and one transmit channel on the communications interface referenced by input CTS. As only USS is possible as communications interface, there are no general address inputs (AT, AR, US), but just two connections to specify which USS station addresses are to be controlled.

NOTE	The blocks automatically assign channel names and address stages for the receive- and transmit channels.
3.20.3.2	Process data acquisition blocks
General	A maximum of 24 process data can be configured for each display device (OP2 or VD1). A process data acquisition block must be configured for each process data. Using a block, the same process data of several display devices can be simultaneously assigned under the same process data number.
Common connections	 DIS Reference to the display system configured by @DIS.
	• ST1, ST2 USS station addresses of the display devices at which the process data can be selected.
	• KEY Process data number under which the process data can be displayed at the display device (for OP2, keys V1 to V12).
	 NAM Name of the process data at OP2. If nothing is specified here, the following is displayed on OP2: "SIGNALnn".
	 MIN, MAX Minimum and maximum to limit the input for the setpoint acquisition blocks.
	• FOR
	 only for the real data types and SDTIME: Number of decimal places which are displayed at the OP2.
	 for older OP2 versions, information is always displayed to seven decimal places and exponents which can be divided by three.
	The connection attribute, scaling factor and units at inputs and outputs of real data types (DISA.X and DISS.Y), are taken into account at the display device.
Process data acquisition block	There are twelve various process data acquisition blocks for display devices:
types	Six for setpoints
	Six for actual values

Name, FB type	Data type	Connections for OP2 display	Designation
DISA_B	BOOL	NAMe	
DISA_I	INT	NAMe	
DISA_W	WORD	NAMe	"Display device,
DISA_D	DINT	NAMe	actual value acquisition"
DISA	REAL	NAMe, FORmat	
DISA_T	SDTIME	NAMe, FORmat	
DISS_B	BOOL	NAMe	
DISS_I	INT	NAMe, MIN, MAX	
DISS_W	WORD	NAMe	"Display device,
DISS_D	DINT	NAMe, MIN, MAX	setpoint acquisition"
DISS	REAL	NAMe, MIN, MAX, FORmat]
DISS_T	SDTIME	NAMe, MIN, MAX, FORmat	

Table 3-69Process data acquisition block types

Setpoint

interlocking

(only OP2)

If a setpoint is simultaneously configured with the same process data block for several OP2, then it cannot be simultaneously changed from each OP2.

The setpoint can be changed at that OP2 at which is was selected by first depressing the "CHG" key. As long as the setpoint is selected, and "CHG" is running, data cannot be changed at other OP2 devices. If an attempt is made to change the value, the user obtains an appropriate system message.

Further information

on the OP2, refer to the OP2 User Manual.

The setpoint function blocks have connections XAL and ENI, which can be used to display an alternative setpoint input at the OP2; but this setpoint cannot be changed. You will find configuring examples for this in the Reference Manual Function block library for setpoint blocks (DISS...).

3.20.3.3 Acquisition blocks for binary values (only OP2)

General A maximum of 32 binary values can be configured at each OP2. A binary value block must be configured for each binary value. In this case, using one block, the same binary value can be assigned to several OP2 devices simultaneously under the same binary value number:

• DIS

Reference to the display system, configured using @DIS.

• ST1, ST2

USS station addresses of the OP2 operator control unit, at which the binary value can be selected.

Common

connections

•	KEY Binary value number which can be selected under the binary value at OP2 (binary value numbers 1 to 4 correspond to keys B1 to B4).
•	NAM Designator for the binary value at OP2. If nothing is specified here, then the following is displayed at the OP2: "SIGNALnn".
•	TRU, FAL Designator for the logical conditions of the binary value at OP2 (TRU = True = Logical 1; FAL = False = Logical 0). If nothing is configured here, then the following is displayed at the OP2: "0" and "1".
Binary value T	here are two types of binary value function blocks:
types •	One for setpoints

One for actual values

FB type name	Data type	Connections for OP2 display	Designation
DISA1B	BOOL	NAMe TRU (true text) FAL (false text)	"Display device, binary actual value acquisition"
DISS1B			"Display device, binary setpoint acquisition"

Table 3-70Binary value function block types

3.20.3.4 Message output blocks (only OP2)

General	 The message is directly output at an OP2 using a message output block via the USS coupling. 				
	 A message is transferred, per broadcast, to all OP2 units connected to the USS bus. 				
	• The message for display can be selected at each OP2. This selection is made by configuring the message classes (prefix).				
	 A maximum of 16 message output blocks can be configured (limited by the number of broadcast channels for the USS coupling). 				
Data entry at	Data entry at the address input of a message output block:				
address input AT	AT: "channelnam.1.99"				
	 channelnam Freely-selectable channel name (this must be unique on the communications interface) 				
	 1 Address stage 1 = 1 signifies a special display device telegram (refer to the Chapter, USS master coupling) 				

• 99

Address stage 2 = 99 signifies a broadcast address (refer to Chapter USS master coupling)

NOTE	٠	A maximum of the first 56 characters of the message text are output
		at the OP2.

• For messages with value, a maximum of the first 28 characters are output. A longer message text will be cut-off.

Message output block MSI

The MSI message output block must be configured to output messages. In this case, connections SSF (submit standard format), SNV (submit message number value) and STM (submit text for messages) must be configured as follows:

Possible data entries at connections SSF, SNV, STM of the message output block MSI:				
SSF (hex format	SNV (prefix/suffix)	STM (text)	Evaluation and output at the OP2:	
0	0	1	Message, only with text: This is always output at the OP2 (with text).	
0	1	1	Message with prefix/suffix and with text: The prefix is evaluated as message class. If the message class is permissible, the message is output with text. Otherwise, it is rejected.	
0	1	0	Message without text: The prefix is evaluated as message class. If the message class is permissible, the message is output with prefix/suffix. Otherwise, the message is rejected.	
0	0	0	(illegal combination; message is rejected)	

 Table 3-71
 Possible data entries at connections SSF, SNV, STM of the message output block MSI

The message class (prefix) of a message is configured at the message acquisition blocks (connection RP) (refer to the Chapter Communications utility, message system).

The permissible message classes for an OP2 are locally configured at the OP2

Further information

on the OP2 operator control device, refer to the User Documentation "SIMADYN D, hardware description".

3.20.4 Application information

General The "DIS" function blocks are structured, so that they operate together within an optimized time frame. The configuring rules (all function blocks in the same sampling time) guarantee that the processing steps are executed in precisely the correct sequence within one sampling time:

- 1. Telegram received from the display device (using @DIS)
- 2. The receive telegram contents are evaluated (using process data- and binary value blocks)
- 3. The transmit telegram contents are prepared (using the process dataand binary value blocks)
- 4. Telegram is transmitted to the display device (using @DIS in the next sampling time)

The subordinate USS coupling operates asynchronously (bus circulating time).

3.20.4.1 Computation times

General The computation times of the function blocks are independent of that of the application. As a display device system can process between one and 31 stations, the computation time differs.

The computation times of the function blocks for a display device as well as the additional computation time for each additional display device in μ s are shown in the following tables.

	@DIS	DISAx	DISSx	DISA1B	DISS1B	DISS11
One display device	360	20	50	20	30	30
Each additional display device	150	0	0	0	0	0

Table 3-72 Computation time in µs

The computation time of a process data setpoint block can be several sampling times longer for certain operations (e. g. saving a value in the change memory).

3.20.4.2 Data transfer times

General The response times when displaying data at an OP2 should not exceed 300 milliseconds, otherwise this will appear too slow for the operator. This time is significantly influenced by the USS bus circulating time and the sampling time in which the blocks are configured. Thus, it is recommended, that both times are kept well below 300 milliseconds.

An overview of the bus circulating time as a function of the configured baud rate, configured number of stations and transferred messages is shown in the following table:

Baud rate (kbaud)	Number of stations	Bus circulating time without messages (ms)	Max. message run time (ms)
187,5	1	10	22
	28	280	
	30	300	
93,75	1	12	34
-------	----	-----	-----
	22	264	
	25	300	
19,2	1	30	135
	6	180	
	10	300	
9,6	1	52	240
	6	312	

Table 3-73 Bus circulating time

NOTE	A configured station which still is not available on the USS bus extends
	the bus circulating time by 20 milliseconds.

Initialization If an OP2 is powered-up, then to start off with, the descriptive data of the configured process data and binary values from SIMADYN D are transferred to the OP2. The maximum time for this initialization is, for a bus circulation time of 300 milliseconds, approximately 40 seconds.

3.20.5 Configuring example

Description The example describes an "OP2SYS" display system with three operator control devices. The three operator control devices have the station addresses 0, 8 and 22 at the USS bus.

Only the function blocks relevant for OP2 are listed here. It is also necessary, for example, to configure a @CSU.

Central block @DIS

Fig. 3-99 Central block @DIS

- Actual value acquisition to display on all three OP2 devices, selectable using key V1
 - The following is output at OP2 together with the configured connection attributes at actual value input X: Scaling factor=1; units=0/00 (dependent on the actual value):
 PEPSI = x.xxxxxx 0/00

Fig. 3-100 DISA

- Setpoint acquisition for display and changing on two OP2 devices (stations 0 and 22), selectable using key V2
 - The following is output at OP2 together with the configured connection attributes at setpoint output Y: Scaling factor=1; units=km/h: SPEED = x.xxxxxxx km/h

	DISS	
OP2SYS 16#0001 16#0040 0 2 'SPEED' 7 0.0 120.0 0.0 1 -	GV DIS Y W ST1 Y1 W ST2 BO SAV I KEY S NAM I FOR R MIN R MAX R XAL BO ENI	-S I - (setpoint)

Fig. 3-101 DISS

- Binary setpoint acquisition for display and changing at an OP2 (station 22) under binary value number 7
 - The following is output at the OP2 (extended binary value processing):
 WINDOW
 OPEN

		DISS	61B			
OP2SYS —	16#0000 16#0040 7 'WINDOW' 'ZU' 'OPEN' - 0 - 1 -	GV W I S S BO BO	DIS ST1 ST2 KEY NAM FAL TRU IAL ENI	Q YTS	BO I	-

Fig. 3-102 DISS1B

3.21 Communications utility, message system

General	The message system allows the user to log certain events which he has selected. A description of these events is collected in the message sequence buffer and is then made available to the user via a data interface.		
Configuring	The message system operates purely on the CPU. Precisely one central block and at least one message evaluation block must be configured. There are no configuring rules regarding the number of blocks.		
Function blocks for the message system	 The message system consists of 3 types of function blocks: Central block @MSC The central block sets-up the required data structures and administers them. It is also responsible in evaluating communication- and system error messages. Message entry blocks MER Message entry blocks generate messages when an input changes. Message entry blocks can mutually interrupt each other. Thus, the messages do not have to be entered in the message sequence buffer in the sequence in which they occurred. The message entry blocks differ by: the number of messages which can be generated. the capability of being able to process additional incoming process conditions/statuses in the form of measured values. Message evaluation blocks MSI Message evaluation blocks output messages, generated by the message entry blocks, via a data interface and make them accessible to the user. 		
3.21.1 Entry le	ogic of the message entry blocks		
3.21.1.1 Mess	sage entry blocks for an activated message		
Entry logic	For message entry blocks, which only generate an activated message, the following conditions must be fulfilled for message entry:input EN must be set.		

- a positive edge must be available at input I1.
- connection Q1 or SM must be reset.

If the conditions are fulfilled, a message is generated and connection Q1 is set.

If the conditions are not fulfilled, then, if connection SM is reset, connection Q1 is also reset.

3.21.1.2 Message entry blocks for an activated and a de-activated message

Entry logic For message entry blocks, which generate an activated and a deactivated message, the following conditions must be fulfilled for message entry:

- input EN must be set.
- for an activated message, a rising edge must be available at input I1 and connection Q1 or SM must be reset.
- for a de-activated message, a falling edge must be available at input I1 and connection Q2 or SM must be reset.

If these conditions are fulfilled, then:

- for a rising edge, an activated message is generated and connection Q1 is set.
- for a falling edge, a de-activated message is generated and connection Q2 is set. If these conditions are not fulfilled, and if connection SM is reset, connections Q1 and Q2 are reset.

Special features for
MER16, MERF16, MERF16, MERF16, MERF16, MERF16,
MER0, MERF0For message entry blocks MER16, MERF16, MER0, MERF0, which have
a vector as message connection, and which generate 16 or 32
messages, for message connection IS1 and output connection QS1 or
QS2, the appropriate bit positions must fulfill the conditions of the entry
logic.
Further, these blocks have a QN output, which indicates whether a
message was generated.

3.21.2 Configuring example for a message system

Prerequisites for a	Subrack
message system	At least one CPU in the subrack
	A data interface is available with the name "D01"
Function blocks required	In the example, only the actually required blocks for the message system are listed. Central communication blocks (e. g. for the data interface) are not listed.
	The configured message system consists of:
	• 1 central block @MSC

- 2 entry blocks (MER and MERF0)
- 2 message evaluation blocks (MSI and MSIPRI)

Name and message buffer	The name of the message system is "MELD". This name is configured at all CMS connections of the message blocks. The message buffer can accommodate 30 messages (connection NOM at @MSC), is located in a volatile RAM (connection SAV at @MSC) and is enabled for message entries (connection MUN at @MSC).		
Assigning message and block	Generated messages can be assigned to blocks using the RP- and RRS connections, whereby each block of the message system has at least one RP connection. Proceed as follows:		
	• Prefix 0 Designates a message which is generated by @MSC (communications- and system error messages). Thus, connection RP of @MSC is assigned the value 0. @MSC automatically generates the suffix, depending on the message type.		
	• Prefix 1 Designates a message, which is generated by MSI (overflow messages). Thus, MSI assigns a value of 1 to connection RP. MSI automatically generates the suffix (number of messages which have overflowed).		
	Prefix 2 Designates a message which was generated by MSIPRI.		
	• Prefix 3 Designates a message, which was generated from a message block (MER or MERF0). Thus, connection REP of MER and MERF0 is assigned the value 3. The suffix is not automatically generated as for the other blocks. In this case, the connections are available, at which the suffix can be configured. 33 various messages are generated in the example (1 MER message, 16 activated messages MERF0, 16 de-activated messages MERF0), which are numbered from 0 - 32:		
	 The message of block MER is assigned suffix 0 (RS connection MER). 		
	 The 16 activated messages of block MERF0 are assigned suffix 1-16 (RS1 connection MERF0). 		
	 The 16 de-activated messages of block MERF0 are assigned suffix 17-32 (RS2 connection MERF0). 		
	• Suffix For block MERF0, for the suffix a basis value is specified. The bit number of the message-generating bits of message signal vector IS1 is added to this basis value.		
Functional combination of the messages	Using a prefix and suffix, it is not only possible to uniquely assign the messages to the generating blocks, but it is also possible to functionally combine the messages. In the configuring example, the MER and MERF0 blocks generate messages with the same prefix, which indicates a logical association.		

Channel on the data interface	In the configuring example, both message evaluation blocks set-up a channel at the data interface D01 in the "select" mode (thus, the same channel name can be configured).
Measured value input and message signals	The measured value input of block MER is not connected in the particular example. At the measured value input, a process condition is normally applied. The message signals of function block MERF0 act similarly.
Generating and reading-out messages	Messages are generated by a rising edge at connection I1 of block MER or by a changing value at input IS1 of block MERF0. The message evaluation block immediately reads-out the first message from the message buffer and transfers into the data channel as both blocks are "enabled" (input EN=1). Additional messages are only transferred into the data channel when the previous message has been read-out of the channel.

Fig. 3-103 Configuring example, communications utility, message system

General

3.21.3 Output formats of the message evaluation block MSI

3.21.3.1 Structure of an error- or alarm message

The message evaluation block MSI has four inputs to select the format:

- input SNV
- input STM
- input STC
- input SSF

The message format is important for the receiver of a message and its interpretation.

- Message textInput STC defines the message text length. It is set to a constant lengthlength(60 characters) using STC = 1. If a message text is shorter than the
maximum length or is not available, it is filled with blanks. The advantage
is the constant number of data which is to be transferred. This connection
has no effect on the remaining structure of the message and the
message type description.
- **Message text** format Inputs SNV, STM and SSF are evaluated once during the initialization phase and then define the format of the messages output. The messages are output at the channel, specified at input AT at the data interface specified at input CTS.

3.21.3.2 Overview of the message formats

Spontaneous ID The spontaneous ID has a constant value of 0 and is of no significance.

- **Sequence number** The sequence number is provided for reasons of reliability and counts the number of messages transmitted so that the receiver can identify which messages have been lost. The sequence number lies in the range from 0-255. When the sequence number has reached the maximum value of 255, when the next message is transmitted, the minimum value 0 is used.
- **Message type description** Essentially a differentiation is made between the standardized and hexadecimal formats. For a standardized format, the individual values are transferred in the IEEE 754 or ISO 646 standard, which defines a normalized 32-bit floating point notation. The messages, both in the standardized as well as in the hexadecimal format, include a message type description which provides information about the format, selected by the initialization inputs and other parts of the message. The message type description is a bit vector, which should be interpreted as follows:
 - Bit 0: If this bit is set, message numbers are output (copy of input SNV).
 - Bit 1: If this bit is set, a message text is output (copy of input STM, unless the message is empty).

	• Bit 2: If this bit is set, the messages are output in the standardized format, otherwise in the hexadecimal format (copy of input SSF).			
	• Bit 3: If this bit is set, a measured value is present.			
	• Bit 4: If this bit is set, then a units text is present. The units text can only be present if there is also a measured value. If there is no measured value or units text, the appropriate message errors are of no significance and are in an undefined condition.			
	Bit 5-7: Unassigned			
Message type	The message type consists of a character, which specifies the message event type, whereby the following is defined: "S" system error, "C" communications error, "F" error messages and "W" warning messages. The first two message types are only generated by the message system central block.			
Message prefix	Corresponds to the input value at RP of the entry block.			
Message suffix	Corresponds to the input value at RS of the entry block.			
Measured value	In the hexadecimal format, the measured value description consist of:			
factor	a 32-bit scaling factor which is output in the floating format			
	 the measured value acquired by the acquisition block 			
	 a measured value data type (SIMADYN D data type as ASCII character sequence) 			
	an 8-character measured value unit			
HEX format and standardized format	As the precise data format must be specified in the hexadecimal format when initializing data transfer, and on the other hand, the measured value can vary in the size of the notation (0,2 or 4 bytes), for measured values, 4 bytes are always transferred. If the measured value occupies less than 4 bytes, which can be recognized at the measured value data type, then the subsequent bytes cannot be assigned.			
	In the standardized format, only the scaled measured value and the 8- character long measured value units are transferred.			
Message instant	The message instant is transferred in the hexadecimal format in the MMS format, time and date (reference point 1.1.84). In the standardized format, the message instant is transferred as ASCII character sequence, which includes date (day, month, year) and time of day (hours, minutes, seconds, milliseconds). Date and time of day are separated by a hyphen. The character sequence is 24 characters long (example: "01.05.1993 08:01:15:0045").			
Message text	The message text is always transferred as ASCII character sequence. In this case, length information is not transferred. This is calculated from the total number of data received. The message text can be a minimum of 60 characters long.			

3.21.3.3 Structure of an overflow message

Overflow message If the message sequence buffer overflows, then the MSI/MSPRE generates an overflow message:

- The overflow message is the warning type ('W').
- The prefix includes the value at input RP of function block MSI which generates the message.
- The suffix includes the number of messages which have been lost.
- There is no measured value. This is indicated in the message type description.
- The time, at which the message evaluation block generated the overflow message, is entered as message instant.
- The "sequence buffer overflow" text is output as message text if input STM of the function block MSI is set.

3.21.3.4 Structure of a communications error message

Communications The central block evaluates the communication errors occurring in the system and generates the following communication error messages:

- A communications error message is message type C error ('C').
- The prefix includes the value at input RP of the central block which generated the message.
- The suffix includes the error number of the C-error message (this is always positive).
- If a measured value is not available, then this is indicated in the message type description.
- The text, configured at input CMT at the central block is output as message text, if input STM of function block MSI is set.
- If the communications error field has overflowed, after all of the Cerror messages have been output, a message is generated which includes, as suffix, the negative number of the messages which have been lost. After this message, MSI does not output any additional Cerror messages. The instant at which the central block identified the communications error field overflow, is entered as message instant.

3.21.3.5 System error message structure

System error A system error message has essentially the same structure as a communications error message. The only differences are the "message text" where the "system message" is always used, as well as the message type ('S'). Further, a maximum of one system error message is generated, which is identified during the initialization phase of the central block.

As suffix, an ID is entered by the system error, which has the following significance:

Value, suffix	Significance		
1	5 V power failure		
2	15 V power failure		
3	Software processing faulted		
4	Error when accessing the L-bus communications buffer memory		
5	Error when accessing the C-bus communications buffer memory		
6	Error when accessing the standard periphery		
7	Error when accessing the special periphery		
8	Undefined L-bus access		
9	Undefined C-bus access		
10	(not used)		
11	Hardware fault which cannot be identified		
12	(not used)		
13	Fault/error which cannot be identified		
14	Fault message (ready internal) from the local expansion bus (LE bus)		
15	Error when accessing the local periphery (LP bus)		
16	Overrun of the system bus controller		

Table 3-74Suffix, system error message

3.21.3.6 Detailed description of the message formats of function block MSI

The description of the message formats consists of 3 parts:

- Assigning initialization inputs SNV, STM and SSF
- Basic format and maximum length of the message. This length corresponds to the size of the channel logged-on by MSI.
- Net data structure which is required to initialize the channel.

General

• Input STC connection is not listed here. For STC = 1, the length specification for the message text always corresponds with the maximum length; for STC = 0, it corresponds to the actual message text length.

SNV=TRUE (message numbers available) STM=TRUE (message text available) SSF=TRUE (standardized format)						
Contents	Message structure (max. 108 bytes)	Net data structure	Data format	No. of data		
Spontaneous ID	Unsigned8	1. variable unit	Unsigned8	2		
Sequence number	Unsigned8					
Message type descrip.	1 Octet	2. variable unit	Octet-String	2		
Message type	1 Octet					
Prefix	Floating-Point	3. variable unit	Floating-Point	3		
Suffix	Floating-Point					
Measured value	Floating-Point					
Measured value dimensions text	8 characters	4. variable unit	Visible-String	92		
Message instant	24 characters]				
Message text	max. 60 characters					

Table 3-75 Standard format with number and text

SNV=FALSE (message numbers not available) STM=TRUE (message text available) SSF=TRUE (standardized format)						
Contents	Message structure (max. 100 bytes)	Net data structure	Data format	No. of data		
Spontaneous ID	Unsigned8	1. variable unit	Unsigned8	2		
Sequence number	Unsigned8					
Message type descrip.	1 Octet	2. variable unit	Octet-String	2		
Message type	1 Octet					
Measured value	Floating-Point	3. variable unit	Floating-Point	1		
Measured value dimensions text	8 characters	4. variable unit	Visible-String	92		
Message instant	24 characters					
Message text	max. 60 characters					

Table 3-76 Standard format without number with text

SNV=TRUE (message numbers available) STM=FALSE (message text not available) SSF=TRUE (standardized format)					
Contents	Message structure (max. 48 bytes)	Net data structure	Data format	No. of data	
Spontaneous ID	Unsigned8	1. variable unit	Unsigned8	2	
Sequence number	Unsigned8				
Message type descrip.	1 Octet	2. variable unit	Octet-String	2	
Message type	1 Octet				
Prefix	Floating-Point	3. variable unit	Floating-Point	3	
Suffix	Floating-Point				
Measured value	Floating-Point				
Measured value dimensions text	8 characters	4. variable unit	Visible-String	32	
Message instant	24 characters	1			

Table 3-77Standard format with number without text

SNV=FALSE (message numbers not available) STM=FALSE (message text not available) SSF=TRUE (standardized format)					
Contents	Message structure (max. 48 bytes)	Net data structure	Data format	No. of data	
Spontaneous ID	Unsigned8	1. variable unit	Unsigned8	2	
Sequence number	Unsigned8				
Message type descrip.	1 Octet	2. variable unit	Octet-String	2	
Message type	1 Octet				
Measured value	Floating-Point	3. variable unit	Floating-Point	1	
Measured value dimensions text	8 characters	4. variable unit	Visible-String	32	
Message instant	24 characters				

Table 3-78Standard format without number and text

SNV=TRUE (message numbers available) STM=TRUE (message text available) SSF=FALSE (HEX format)					
Contents	Message structure (max. 92 bytes)	Net data structure	Data format	No. of data	
Spontaneous ID	Unsigned8	1. variable unit	Unsigned8	2	
Sequence number	Unsigned8				
Message type descrip.	1 Octet	2. variable unit	Octet-String	2	
Message type	1 Octet				
Prefix	Unsigned16	3. variable unit	Unsigned16	2	
Suffix	Unsigned16				
Measured value scaling factor	Floating-Point	4. variable unit	Floating-Point	1	
Measured value	4 Octets	5. variable unit	Octet-String	6	
Measured value data type	2 Octets				
Measured value dimensions text	8 characters	6. variable unit	Visible-String	8	
Message instant	Time and date	7. variable unit	Time and Date	1	
Message text	max. 60 characters	8. variable unit	Visible-String	60	

Table 3-79Hexadecimal format with number and text

SNV=FALSE (message numbers not available) STM=TRUE (message text available) SSF=FALSE (HEX format)					
Contents	Message structure (max. 88 bytes)	Net data structure	Data format	No. of data	
Spontaneous ID	Unsigned8	1. variable unit	Unsigned8	2	
Sequence number	Unsigned8				
Message type descrip.	1 Octet	2. variable unit	Octet-String	2	
Message type	1 Octet				
Measured value scaling factor	Floating-Point	3. variable unit	Floating-Point	1	
Measured value	4 Octets	4. variable unit	Octet-String	6	
Measured value data type	2 Octets				
Measured value dimensions text	8 characters	5. variable unit	Visible-String	8	
Message instant	Time and date	6. variable unit	Time and Date	1	
Message text	max. 60 characters	7. variable unit	Visible-String	60	

Table 3-80Hexadecimal text without number with text

SNV=TRUE (message numbers available) STM=FALSE (message text not available) SSF=FALSE (HEX format)					
Contents	Message structure (max. 32 bytes)	Net data structure	Data format	No. of data	
Spontaneous ID	Unsigned8	1. variable unit	Unsigned8	2	
Sequence number	Unsigned8				
Message type descrip.	1 Octet	2. variable unit	Octet-String	2	
Message type	1 Octet				
Prefix	Unsigned16	3. variable unit	Unsigned16	2	
Suffix	Unsigned16				
Measured value scaling factor	Floating-Point	4. variable unit	Floating-Point	1	
Measured value	4 Octets	5. variable unit	Octet-String	6	
Measured value data type	2 Octets				
Measured value dimensions text	8 characters	6. variable unit	Visible-String	8	
Message instant	Time and date	7. variable unit	Time and Date	1	

Table 3-81Hexadecimal format with number without text

SNV=FALSE (message numbers available) STM=FALSE (message text not available) SSF=FALSE (HEX format)					
Contents	Message structure (max. 28 bytes)	Net data structure	Data format	No. of data	
Spontaneous ID	Unsigned8	1. variable unit	Unsigned8	2	
Sequence number	Unsigned8				
Message type descrip.	1 Octet	2. variable unit	Octet-String	2	
Message type	1 Octet	1			
Measured value scaling factor	Floating-Point	3. variable unit	Floating-Point	1	
Measured value	4 Octets	4. variable unit	Octet-String	6	
Measured value data type	2 Octets				
Measured value dimensions text	8 characters	5. variable unit	Visible-String	8	
Message instant	Time and Date	6. variable unit	Time and Date	1	

Table 3-82Hexadecimal format without number and text

3.21.3.7 Output format of the message evaluation block MSPRI

General

Contrary to the message evaluation block MSI, the format of the messages of the MSPRI evaluation block can be freely selected. Here, only one format is output. Thus, there are no connections to select a format when configuring the block. The MSPRI block has been especially developed to output messages on a printer. All of the messages are output as text and with line feed. A message consists of a maximum of two lines.

Structure of the 1st line

Character of the 1st	Significance	Output format
line		
1-24	Date/time	Day.Month.Year, Hour:Minute:Second:Millisecond
25-27	Text: "P:"	
28-32	Prefix	Max. 5 characters and right justified
33-35	Text: "S:"	
36-40	Suffix	Max. 5 characters and right justified
41-45	Text: "Type:"	
46	Message type ('C','F','W' or 'S')	One character
47-50	Text: "Nr:"	
51-53	Sequence number	Max. 3 characters and right justified
54	Text: " "	
55-67	Measured value (optional: this is only entered if the message contains a measured value)	 Is output as floating value in the following sequence: sign (positive = "+", negative = "-") number of places before the decimal point followed by a decimal point and 6 places after the decimal point exponent, started with the character 'e' sign (positive = "+", negative = "-") as well as 2 exponent positions
68	Blanks (optional)	
69-76	Measured value unit (optional: is only entered if the message contains a measured value)	8 characters
77, 78	Special characters, CR and LF	Line feed

Table 3-83 Structure of the MSPRI evaluation block message, 1st line

Structure of the 2nd line

	U U	
Character of the 2 nd line	Significance	Output format
1-60	Measured value text (optional)	Variable length
61, 62	Special characters, CR and LF	Line feed

The second line contains the message text, and is only output if there is a message text. Otherwise this is completely eliminated.

 Table 3-84
 Structure of the MSPRI evaluation block message, 2nd line

Example of a message output

"01.05.1993 08:01:15:0045 P: 123 S: 10 Typ: W Nr: 25 -1.123456e+12 ms " "This is a message text"

Table 3-85Example of a message output

NOTE

Overflow-, communication error- and system error messages have the same logical structure as for block MSI.

3.22 Communications utility parameter processing

3.22.1 Master configuring

3.22.1.1 Description of scope

- General A PKW interface (parameter ID value) can be used between SIMADYN D and SIMOREG or SIMOVERT drive converters using the communications utility, parameter processing for variable-speed drives. Drive converterand technology parameters can be read and changed via the PKW interface.
- **Coupling** Process data are transferred and parameters handled for the coupling between the drive converters and SIMADYN D. On the SIMADYN D side, process data is transferred using the transmit- and receive function blocks (CTV/CRV).
- **Parameter handling** @DPH and DPI function blocks, are used for parameter handling. They are used to read and change drive converter- and technology parameters, and they can also receive parameter change reports from the drive converters. The function blocks for parameter handling (in the following known as PKW blocks) can be used independently of the existing SIMADYN D couplings. However, it is necessary to refer to the correct protocol by appropriately configuring.

Function blocks The PKW blocks do not have a direct connection at a data interface of a coupling module. Data transfer is always realized using transmit- and receive blocks (CTV, CRV).

The PKW interface is sub-divided into two block types:

- 1. Blocks to supply transmit- and receive blocks. These blocks have the main task to convert the parameter tasks and
 - responses into a format corresponding to the definition (parameter ID, index and parameter value as well as parameter change report), and to transfer these to the transmit blocks, or receive them from the receive blocks. Further, the received parameter change reports are output at this block type. This block type is designated as PKW central block @DPH in the following (Device Parameter Handling).

2. Blocks for the man-machine interface (MMI).

The tasks are specified here in a comprehensible form and the device/drive converter responses displayed. This is configured. By cascading this block type, an automatic task sequence can be configured. This block type is known in the following as parameter block DPI (Device Parameter Information.

The interconnection and the information transfer between both block types is not visible and cannot be influenced by the user/configuring engineer.

Configuring In order to process parameters for a drive converter (read, change parameter values and acknowledge parameter change reports), precisely one PKW central block and at least one parameter block should be configured. A parameter block is always precisely assigned one central block. For example, if parameter handling is to be configured for 5 drive converters, then 5 central blocks must be configured, and as many parameter blocks for each central block. The number of parameter blocks for each central block can be different and is defined by the application.

There are no regulations regarding the block sampling time. All PKW blocks can also be configured in different sampling times.

3.22.1.2 Supported couplings

General The following couplings are supported:

- USS Master with CS7/SS4
- PROFIBUS DP with CS7/SS52

Using these couplings, for example, the following drive converters can be parameterized:

- SIMOVERT drive converter 6 SE 12
- SIMOREG drive converter 6 RA 24
- SIMOVERT Master Drive 6 SE 70

The following parameter handling does not take into account the various scaling factors and notation types of parameter values in the various SIMOREG and SIMOVERT drive converters.

3.22.1.3 Telegram structure

General Communications to the drive converters is realized using telegram (PPOs). A telegram can be sub-divided into the PKW (parameter ID value) and PCD (process data). The PKW component uses the first 3 words (6 octets) or 4 words (8 octets). After this component, the process data can be specified; this will no longer be discussed in this document. The length of the PKW component is defined both on the drive converter side as well as on the SIMADYN D side. When using the 3-word interface, only single-word tasks are possible; for the 4-word interface, also double-word tasks.

3.22.1.4 Mode of operation of the PKW blocks

- **Information flow** The information flow between the individual function blocks is configured as follows:
 - A task (by appropriately configuring the input connections) is formulated at a parameter block.

- As soon as the appropriate parameter block is to be executed (when cascading several parameter blocks), it transfers its task to the central PKW block.
- The cascading defines when a parameter block is to be executed and when it can transfer its task.
 (A task is transferred, if the block has been activated, i.e. if the input EN is a logical 1, and the value at input IC has changed).
- A parameter block remains active (i.e. it is being executed) until it receives a response regarding its task from the central PKW block. Then it activates the following parameter block, configured in the cascade, by inverting its cascade output QC.

Fig. 3-104 Mode of operation of the PKW blocks

Delay time limiting Delay time limiting, i.e. limiting the delay between the task transfer and the response being accepted is not possible for parameter blocks, but only for the central block. The parameter blocks wait, unconditionally, for a response from the central PKW block. The configuring engineering must ensure, that several parameters cannot simultaneously, transfer tasks to a central PKW block (he must also ensure that there is no overlapping).

- Response
processingThe central PKW block first processes a response. If differentiates
whether it received a parameter response or a parameter change report
from the associated receive block. It transfers a response to the currently
active parameter block; it outputs a parameter change report at its own
I/O.Task processingAfter processing the response, the central PKW block processes a task. It
 - **ask processing** After processing the response, the central PKW block processes a task. It converts the task, received from the parameter block, formally

corresponding to the PPO type, and transfers it, using the virtual communication connections, to the associated transmit block.

- **Monitoring counter** After the task has been transferred, the central PKW block starts a monitoring counter. The response must be received by the central PKW block within this TIMEOUT, otherwise it is considered as ended by the central PKW block (with the appropriate information to the parameter block).
- **PKW interface** Drive converters can handle PKW interfaces, 3- or 4-words long, depending on the drive converter. The PKW interface on the SIMADYN D side can handle both of these formats. The length definition is realized using initialization inputs PHL at the central PKW block @DPH and cannot be changed during operation.

In order to handle the PKW interface, the PKW component in the telegram must be processed. To realize this, the @DPH central block of the communications utility, parameter processing from variable-speed drives, inputs (XW1, XW2, XWS and XWL) and output (YW1, YW2, YWS and YWL) which must be connected to the standard transmit /receive blocks CTV, CRV via virtual connections (refer to the Chapter Communications utility, process data).

3.22.1.5 Configuring example

Hardware structure	Subrack
	• CPU
	CS7 module with SS52 communications module
	 A SIMOVERT drive converter is connected to the SS52 communications module via PROFIBUS DP.
Description of the configured software	The SIMOVERT drive converter is to be operated using the communications utility, parameter processing, from variable speed drives, whereby two parameter blocks are to be configured.
	The @CSPRO central coupling block is first required when using the CS7/SS52. In addition, block CRV and block CTV are configured, which handle data transfer from and to the drive converter. Blocks CRV and CTV are connected to the @DPH central block via virtual connections.

Fig. 3-105 Part 1 of the complete system, including @CSPRO (central block PROFIBUS DP)

Fig. 3-106 Part 2 of the complete system including the @CSPRO (central block PROFIBUS DP)

The following points must be observed when configuring:

- The PROFIBUS DP protocol is selected with UP=1.
- The value RCM=10 specifies that a response to a task must be received within 10 sampling times; otherwise a TIME-OUT message is generated. RCM = 0 indicates that time monitoring is not required (no TIMEOUT).
- A 4-word PKW interface is configured at @DPH using PH1 = 1. In this case, connections XWL and YWL are valid. With PHL = 0, a 3-word PKW interface is configured, and connections XWS and YWS are valid.
- In this example, 2 additional words are used for process data. The process data are generated by the PZD block.
 4 words PKW + 2 words PZD results in PPO type 1).
- The virtual connection REC of block CRV is connected with the inputs XW1, XW2 and XWL of the @DPH block via virtual connection names. The sequence number is important.
- The outputs YW1, YW2 and YWL of block @DPH are connected with the virtual connection TRA of block CTV via the virtual connection name. The sequence number is important.
- Parameter change reports are automatically acknowledged by specifying APR=1. Parameter change reports, received from @DPH, are not output at output connections, but are immediately acknowledged.

•	The PHS connections of block DPH and parameter blocks DPI1 and
	DPI2 have the same name - "DEVICE". Thus, the parameter blocks
	are assigned to the central block.

- Output QC of DPI1 is connected to input IC of DPI2. Further, output QC of DPI2 is connected to input IC of the DPI1. Thus, the cascading connections are connected with one another in a ring.
- Output QC of block DPI2 is initialized with 1. Thus, a negation is injected into the cascading ring. Without this initialization, a parameter block would never be able to issue a task.
- Both parameter blocks are enabled, i.e. the connections are 1.
- A task is created at both parameter blocks by specifying a constant value. For block DPI1, it involves reading the value of parameter 30; the DPI2 block issues a read task for the indexed parameter 96 with index 1.

Mode of operation In the configuring above, the tasks, available at blocks DPI1 and DPI2 are cyclically processed. Thus, parameter 30 and indexed parameter 96 are cyclically read with index 1. The outputs of block DPI are not processed in the example which, in a specific application would of course be the case.

The mode of operation of the complete system is as follows:

- Output QC of DPI2 is initialized with 1.
- As output QC of the DPI2 is connected with input IC of block DPI1, input IC has changed, as this is internally initialized with 0.
- DPI1 issues a task and waits for the response.
- If the device responds to the task, then DPI1 provides the response at the outputs and negates its output QC. Thus, input IC of block DPI2 changes.
- Block DPI2 issues its task, waits for a response, which is output at the outputs of the block, and in turn, negates its output QC.
- The DPI blocks, interconnected in a ring-type structure, are processed once and then the cycle starts again.

If a block is disabled (input EN set to 0), then this does not restrict the other DPI blocks in the ring, as the block transfers a change at input IC to its output QC, without actually issuing a task.

3.22.1.6 Task/response IDs

Overview

In this chapter, the possible tasks, which could be formulated by the configuring engineer at the DPI blocks, re-specified. Further, the possible responses are specified for each task. In this case, it is also explained which inputs and outputs are relevant for the tasks/responses. The entry XS/XL in the column means that, dependent on input PHL of the assigned central block @DPH, either connection XS (PHL is 0) or XL (PHL is 1) is significant. Entries, designated with x in the table, mean that the connection here must be assigned, or is assigned, a sensible value.

Task ID PR	Parameter number PN	Parameter index Pl	Parameter value XS/XL
0 - No task	0	0	0
1- Request parameter normalization factor	х	0	0
2 - Request parameter value	х	0	0
3 - Change parameter value, 2-byte format	х	0	х
4 - Change parameter value, 4-byte format	х	0	х
5 - Request parameter value, array	х	х	0
6 - Request parameter value, array, 2-byte	х	х	х
7 - Request parameter value, array, 4-byte	х	x	х
8 - Change parameter value and save in the EEPROM 2- byte	х	0	х
9 - Change parameter value and save in the EEPROM 4- byte	х	0	х
10 - Change the parameter value and save in the EEPROM array, 2-byte	х	х	х
11 - Change the parameter value and save in the EEPROM array, 4-byte	х	х	x

Table 3-86 Task ID PR

Response ID PRR	Parameter number PNR	Parameter index PIR	Parameter value YS/YL
0 - No response	0	0	0
1 - Transfer parameter normalization factor	x	3	х
2 - Transfer parameter value (2 bytes)	х	0	х
3 - Transfer parameter value (4 bytes)	x	0	х
4 - Transfer parameter value (array, 2 bytes)	x	x	х
5 - Transfer parameter value (array, 4 bytes)	х	х	х
6 - Task cannot be executed (with error code)	x	х	х
7 - PKW interface has no change rights	x	x	х

Table 3-87Response ID PRR

Possible response

The next table explains which response ID is used to respond to an issued task ID. In addition, TIMEOUT is possible for all tasks, which in this case is output at YTS.

Task ID PR	Possible response IDs PRR
0	0,6
1	1,6
2	2,3,6
3	2,6,7
4	3,6,7
5	4,5,6
6	4,6,7
7	5,6,7
8	2,6,7
9	3,6,7
10	4,6,7
11	5,6,7

Table 3-88	Task ID PR	response ID PRR
1 abie 5-00	Task ID T IN,	response in rin

3.22.1.7 Task/response assignments

Sequence If the @DPH central block set-up a task at its outputs, issued from a DPI block, then it waits until this task is responded to in the specified TIMEOUT. (Initialization input RCM, there is no TIMEOUT for RCM=0.). In this case, the value RCM specifies the number of sampling times which block @DPH waits for a response from the issued task before a TIMEOUT message is generated. The inputs of the @DPH block are checked at each cycle in order to define the response. If a response is present at the inputs, which matches the task which was issued, then this is transferred to the DPI block.

3.22.1.8 Cascading

Sequence By changing input IC with input EN set, a task is transferred to the central block. If the response is received, or if input EN is not set, then output QC is set.

A "Round Robin" topology can be configured using several DPI blocks by connecting the QC outputs with the IC inputs; in this case, the interconnected DPI blocks can issue, one after the other, a task to the central block. In the configuring example, block DPI1 would first issue a task to the device; if DPI1 was to receive a response to this task (in this case, it could also involve a TIMEOUT), then it negates its output QC. Thus, DPI2 becomes active. By interconnecting to form a ring (QC from DPI2 connected with IC from DPI1), it is ensured that only one DPI is active. However, we would like to expressly point out that a non-activated DPI block (connection EN is 0) does not diminish the ring functioning, as a negation of input IC is also repeated at output QC.

The ring should be initialized, so that a cascaded negation is generated. As the DPI blocks internally initialize input IC with 0, the cycle can be started by initializing a QC output with INIT = 1.

Prerequisites When interconnecting the cascade circuit, the prerequisites are as follows:

- All DPI blocks with the same device names (initialization input PHS) should be connected with one another in a ring form via the IC/QC connections.
- The output QC of a DPI block in this ring, should be initialized with 1.
- The DPI blocks of this ring should be configured in the same sampling time as the associated central block. If this is not observed, this doesn't result in erroneous operation, but however, has the disadvantage that computation performance is unnecessarily used.

3.22.1.9 Parameter change report processing

- **Description** The device can send parameter change reports. If a parameter change report was sent, the normal task/response processing is interrupted until the parameter change report is acknowledged. Variable-speed drives can acknowledge parameter change reports from communication utility parameter processing in two different ways:
 - The communications utility, parameter processing from variable-speed drives (APR=1) automatically acknowledges parameter change reports. The configuring engineer is not informed when a parameter change report is received.
 - The user acknowledges the parameter change report (APR=0). In this case, the user is informed about the parameter change report as the parameter change report is applied to the appropriate outputs of the central block. The user acknowledges the parameter change report by setting input APR to 1. If this is then followed again by a manual parameter change report acknowledgment, then connection APR should be again set to 0.

3.22.1.10 Cyclic tasks

Sequence The drive converter cyclically processes the task which has been issued until the drive converter receives a new task. For responses, which contain parameter values, the drive converter responds by repeating the response telegram and that, always with the actual value. The PKW blocks on the other hand provide each task with precisely one response. If cyclic tasks are to be simulated, then input IC of the parameter block should be cyclically negated .

3.22.1.11 Temporary error messages from the DPI blocks

GeneralIf a task or response was not able to be correctly processed by a DPIinformationblock, then it indicates this at its outputs. The following outputs are used:

QTS

The QTS output indicates whether the block is operating error-free or, has disabled itself due to a problem. If output QTS is 0, the block has disabled itself. In this case, output YTS indicates the error cause.

QS1

If a task was issued, this output indicates whether the task was transferred to the central block (logical 1). If the task was not able to be successfully transferred, output YTS indicates the error cause. In this case, the block does not disable itself. The values have the following significance:

- 0x6714: An invalid task ID is present at input PR. Valid task IDs: 0
 -11
- **0x6715:** An invalid parameter number is available at input PN.
 Valid parameter numbers: 0 2047.
- **0x6716:** An invalid index is available at input PI. Valid values: 0 254.
- **0x6717:** A double word task is available at the 3-word PKW interface length.

• QS2

If a response has been received, this connection indicates as to whether the response was correctly received (logical 1) or an erroneous response was received. If there is an error, the cause of the error is indicated at connection YTS. The block does not disable itself. The significance of the values are as follows:

 0x6718: The drive converter did not provide a response within the TIMEOUT time configured at the central block.

3.22.1.12 Important drive converter settings

Parameter setting The following parameter settings should be made at the drive converter:

- The correct interface protocol must be set at the interface which is used (USS slave, PROFIBUS DP).
- The baud rate must be set.
- The correct number of PKW words must be selected at the interface which is used.
- The correct number of PZD must be set at the interface which is used.

3.23 For change tasks, the parameter change rights of the drive converter must be set at the configured interface. Network

3.23.1 Terminology

Terminology, which is used in these Configuring Instructions, are explained in this Chapter.

Data interface	The data transfer area can be located on all coupling modules (interface modules) and the CPU.
Interface channel	Bi-directional data channel, configured using an US input.
iP module	Intelligent peripheral module, in this case: Overall term for the CSH11, CS7/SS4, CS7/SS5 modules
Network node	Subrack, on which a @NMC function block is configured.
Network group	Network nodes, which are connected with one another via a rack coupling (CS12/13/14, CS22).
(Network) nodes	Network nodes.
Target nodes	Node, which is the destination of a particular telegram.
Island	Network group, which includes one or several iP modules.
Adjacent island	Network group, which is to be reached from an island via an iP module
Unused channels	Channels, which were logged-on, but which can no longer be used
Network-capable channel	Channel, whose channel name consists of the subrack-, module- and optional connector name.
Administration channel	Channel, logged-on from the @NMC via which network administration data are sent.
Data transfer channel	Channel, logged-on from the @NMC, via which user data is sent if the network can be freely selected.

3.23.2 Description

The rigid network implements a channel connection via network nodes. In this case, the sender and receiver can be located on various data interfaces, which are not directly connected with one another. The network transparently establishes the connection between sender and receiver so that it appears that the channels are located on the same data interface.

The rigid network is configured via function blocks. In this case, the @NMC (Network Master Control) is the "heart" of the network. It must always be configured.

- The @NMC should be configured on all of the subracks, which are to be logged-on in the network.
- A basic prerequisite for error-free network operation is to configure subrack names which are unique throughout the network.

- All CS22 modules, connected to a CS12/13/14 module, must have different module names.
- Module names must be 6 characters long, and the last character must fulfill the syntax of the module names.
- When configuring a function block @NMC, the channel names "NETCONT" and "NETCHxx" (with x = digits from 0 - 9) are reserved, and may not be used by the user.
- This configuring syntax is not checked and is the sole responsibility of the configuring engineer.

Perfect network operation cannot be guaranteed if this configuring syntax and regulations are not followed.

3.23.3 Rigid network

3.23.3.1 Address data in the rigid network

Channels, which are fed via several subracks, must fulfill specific conventions (syntax), so that they can be handled from the rigid network.

• An address, which is to be viewed from the network, must always have the following syntax

```
"Channel name. @BGT name.module name"
or in the form
```

"Channel name. @BGT name.module name.SST name" This form is also known as the network address. In this case, the BGT name represents the subrack names, BG name, the module names and the SST name, the interface name (connector). The address can additionally include address stages. The network no longer tracks channels, which only have the form "channel name" (and optional address stages).

If two channels exist with the same name, where only one consists of the channel name, and the other contains a complete network address, then it involves two different channels, which can lie adjacent to one another on a data interface. The following diagram clearly illustrates this.

- A network channel includes a *source address* and a *target address*. The source address specifies where the sender writes its data and the target address specifies where the receiver reads the data from the channel. Thus, when configuring, the target address should be specified for a sender, and the source address for a receiver.
 - For a handshake- or refresh channel (one sender, one receiver), the partner address should be specified. Example:

BGT1 (subrack 1) and BGT2 (subrack 2) are coupled to one another via a rack coupling. Data interface BG1___A is located on BGT1, and data interface BG2___A on BGT2. A sender and a receiver are to communicate via the "Channel" channel (handshake- or refresh channel). If the sender is located at BGT1, then the channel name should be specified at its AT input with "Channel.@BGT2.BG2__A" and on BGT2, at the receiver, "Channel.@BGT1.BG1__A" should be specified at its AR input. Also refer to the figure, case 1). The corresponding is valid for bi-directional connections (US

inputs).

- For a select channel (several senders, one receiver), a source cannot be specified, as the sender cannot be uniquely defined. The receiver, which has the source address at its AR input cannot specify this, as the source is not uniquely defined. In addition to the channel name, the receiver only specifies the characters
 '@' at its AR connection. (Refer to the Fig. case 2).
- For a multiple channel (one sender, several receivers), a destination cannot be specified, as the receiver cannot be uniquely defined. The sender, which specifies the target address at its AT connection, cannot make a clear definition here, as the target cannot be uniquely determined. In addition to the

channel name, the sender only specifies the '@' character at its AT connection. (Refer to Fig. case 3.)

For a bi-directional select/multiple-connection, the sender multiple/receiver selection cannot make any specification. Case 2.) and 3.) simultaneously occur in this case. In addition to the channel name, the sender-multiple/receiver select only specifies the '@' character at its US connection. (Refer to Fig. case 4.).

BGT1 with data interface BG1A BGT2 with data interface BG2A			
1.)	Sender-Handshake/Refresh: AT-Anschluß: "Channel.@BGT2.BG2A"		Receiver-Handshake/Refresh: AR connection: "Channel.@BGT1.BG1A"
2.)	Sender-Select AT connection: "Channel.@BGT2.BG2A"		Receiver-Select AR connection: "Channel.@"
3.)	Sender-Multiple: AT connection: "Channel.@"		Receiver-Multiple: AR connection: "Channel.@BGT1.BG1A"
4.)	Sender-Multiple/Empfänger-Select: US connection: "Channel.@"		Receiver-Multiple/Sender-Select US connection: "Channel.@BGT1.BG1A"

The following diagram clearly illustrates the situation.

3.23.3.2 Assigning the data interfaces to the configured NTCs

The NTC has the task to search for network channels. In this case, it cyclically searches for the data interfaces, assigned to it from @NMC.

The @NMC function block automatically determines whether an NTC function block was successfully configured. If this is the case, then it distributes the configured data interfaces to the configured NTCs. It proceeds as follows:

It consecutively assigns the data interfaces for all function blocks NTC. If all of the NTC data interfaces have been assigned, and if non-assigned data interfaces are still available, it starts again at the first NTC. The NTC are handled in the log-on sequence; the data interfaces according to increasing slot number. If there are more NTC function blocks than there are data interfaces, the superfluous NTC go into the "*OFF*" condition.

It does not make sense to configure NTC function blocks in different sampling times, as generally it cannot be determined which NTC are assigned to which data interface.

3.23.3.3 Assigning the copying relationships of the NTC to NTD

An NTC function block can be assigned to several NTD function blocks. The NTC transfers a correctly logged-on channel to an NTD, which then handles the actual data transport. The copying relationships (links) are then consecutively transferred to the NTD function blocks. If all of the NTDs were assigned a copying relationship (link), the first NTD is reselected. The NTD are handled in the sequence in which they were logged-on. It does not make sense to configure those NTD function blocks which are assigned to an NTC in different sampling times.

3.23.3.4 Route selection and errors

If the NTC finds a network channel, it must first define a route to the destination. Only the shortest route to the destination is considered. If there are several "shortest" routes, up to four routes are checked. If a channel cannot be logged-on up to the target node, this is not signalled to the utility FB, as principally, a subrack could still be powered-up, whereby a route would be possible to the destination.

If send- and receive channels have different channel modi or log-on parts, then this is signalled to the sender and receiver using an appropriate acknowledge index.

Network connections which have been established once, are kept, until the subrack, on which the channel is physically located (i.e. that subrack, which accommodates the CS12/13/14 module), is re-organized or shutdown.

If a subrack is powered-down and powered-up again in operation, existing network connections are automatically re-established.

3.23.3.5 Initialization of a rigid network

While the connection to a rigid network is being established, it is not permissible that a subrack which accommodates a CS22 board, on which a network connection is set-up fails. In this case, the associated CS12/13/14 module must be re-organized.

3.23.3.6 Channel modes

All four channel modi (handshake, refresh, select, multiple) are supported in the rigid network. This has effects, especially for the "select" and "multiple" modes: For several of these senders (select) or receivers (multiple), these can be located on various subracks, without having to have had channels being logged-on a multiple number of times. This is explained in more detail in the configuring example for the network status.

3.24 Communications utility process data

Application The communications utility, process data supports "pure" data transfer in the transmit- and receive directions, i.e. the function blocks only transfer process data. The data itself is neither evaluated nor logically interpreted.

There are two block classes for data transfer:

- receive- and transmit blocks: CTV and CRV
- channel marshalling blocks: CCC4 and CDC4

The CRV and CTV blocks can handle most of the communication applications.

3.24.1 Receive- and transmit blocks

General There is one receive- and one transmit block. They are called CRV (communication receive virtual) and CTV (communication transmit virtual).

Using a receive- or transmit block a telegram is configured, which is transferred from or to a coupling module. The structure and contents of the telegram are defined when configuring the virtual connections.

3.24.1.1 Virtual connections

General

A virtual connection is an "invisible" connection between block connections. There is no interconnection drawn at the configuring interface, and only a margin connection is created.

The configuring engineer defines which values are to be transferred from block outputs or to block inputs. He does this using "connection name receive/transmit" at the receivers or transmitters and the "virtual connection name" and the "sequence number" at the block inputs or block outputs to be processed.

Connection name The connection name consists of an exclamation mark ("!") and a maximum of 6 characters (upper case letters or numbers). The character sequence is located directly after the exclamation mark (e.g. "!SEND"). The exclamation mark does not have to be configured as it is automatically generated.

A virtual connection consists of:

- virtual connection name
- sequence number

Connection name and sequence number are separated by a point (e.g. "!SEND.0056"; the point (period separator) between the connection name

	and the sequence number does not have to be configured as it is automatically generated).
Data types	Virtual connections can be configured at I/O with the following data types:
	• BOOL (BO), BYTE (BY)
	• WORD (W), DOUBLE WORD (DW)
	• INTEGER (I), DOUBLE INTEGER (DI)
	• REAL (R) and SDTIME (TS)
NOTE	Virtual connections cannot be configured at I/O, data types STRING (S) or GLOBAL VARIABLE (GV).
Telegram structure	The virtual connections with the same connection name (data) define a telegram with a specific structure. The sequence of the data within the telegram is defined by the sequence number. The data with the lowest number is located at the start of the telegram; that with the highest number, at the end. The sequence number defines the relative position of

the data in the telegram. Gaps in the sequence numbers are ignored.

Configuring example

Receiving and transmitting with virtual connections.

Fig. 3-107 Configuring: Receiving and transmitting with virtual connections

Configuring rules with reference to the example:

- The virtual connections, which belong to a virtual connection name, can be configured at block I/O with different data types (ANY_FB.Y1 "REAL" and ANY_FB.Y6 "INTEGER") and in any sequence.
- Virtual connections (receive) at block inputs can be configured a multiple number of times if the inputs have the same data type. These inputs are supplied with identical data. (ANY_FB.X4 and X5)
- The same virtual connection (transmit) with identical connection name and sequence number may not be configured a multiple number of times at block outputs.
- Several different virtual connections (transmit) can be configured at a block output (ANY_FB.Y3). The connections can differ, both in the connection name as well as in the sequence number.

Connection	Virtual connection	Data type	Length
ANY_FB.X2	!REC.0003	R	4
ANY_FB.X1	!REC.0017	R	4
ANY_FB.X4/X5	!REC.0555	R	4
			Total length = 12 bytes

Telegram structure of the connection name/data "!REC" from the example:

Table 3-89 Telegram structure of the connection name/data "!REC"

Telegram structure of the connection name/data "!SEND" from the example:

Connection	Virtual connection	Data type	Length
ANY_FB.Y1	!SEND.0001	R	4
ANY_FB.Y3	!SEND.0004	R	4
ANY_FB.Y6	!SEND.0007	1	2
			Total length = 10 bytes

Table 3-90 Telegram structure of the connection name/data "!SEND"

The structure of the configured telegram appears in similar form in the CFC reference data in the view "cross-references, operands" or in the CPU MAP listing (of the CFC) under "virtual connections". The configuring can be checked using these lists.

NOTE

- The virtual connection names are known on the CPU. Data from various function charts can be combined to form a telegram; however, this is not possible from various CPUs.
- Data is processed by the receive/transmit blocks in their sampling time. The sampling times of the blocks with virtual connections have no influence on the telegram processing cycle.
- The configuring engineer is responsible in ensuring that the telegram structure and length are compatible with that of the coupling partner (refer to the chapter Mode of operation of the couplings). These regulations are dependent on the secondary coupling. If an error situation develops, the receive/transmit block disables itself and makes an entry in the communications error field (e.g. PROFIBUS DP or subrack coupling), or, communications are not established (e.g. Industrial Ethernet).

3.24.1.2 I/O of the CRV, CTV blocks

Inputs CTS	The configured coupling module name via which communications is to be realized, is specified at input CTS of the block. For CS7 or T400 modules, it is also necessary to specify the connector (X01, X02 or X03).			
Input AR, AT	The address parameter for communications is specified at input AR, AT. It consists of a channel name and the optional address stages. The significance of the address parameters is dependent on the coupling used. (e.g. PROFIBUS or DUST).			
Input MOD	The data transfer mode is configured at the MOD input (e.g. "R" for refresh or "H" for handshake)			
Input EN	Input EN defines whether data is to be transferred in the current operating cycle.			
Inputs CRR, CRT	The virtual connection name, receive or send is configured at input CRR or CRT.			
3.24.2 Channe	el marshalling blocks CCC4 and CDC4			
Application	Channel marshalling blocks are used to split-up or combine channels.			
3.24.2.1 Grou	ıp block CCC4			
General	The CCC4 function block (Communication Collect Channel 4) combines up to 4 channels to form one. The channels may have different address data, be located at different interfaces and have different data transfer			

Prerequisites In order that the function block can operate, at least 2 channels must be combined (CT1- and CT2 input data are mandatory).

modi as well as channel lengths.

Data entries at
connections CT3,
CT4If only 2 channels are to be combined, then a "0" (zero) should be
configured at initialization inputs CT3 and CT4. In this case, connections
AR3, AR4, MO3, MO4, LT3 and LT4 are no longer evaluated.

Data entries at
input CTS, AT,
MODThe transmit channel is specified at inputs CTS, AT and MOD. The length
of the net data to be transmitted is obtained from the sum of the receive
data. Receive channels 1-4 are combined, one after the other to form a
large net data block.

Example

Fig. 3-108 Combining 4 receive channels to form a transmit channel

Fig. 3-109 Configuring example: CCC4 connections when combining 4 channels

3.24.2.2 Distribution block CDC4

General

	The function block CDC4 (Communication Distribute Channel 4), sub- divides a channel in up to 4 channels. The channels may have different address data, be located on different data interfaces, and have different data transfer modi as well as channel lengths.
Prerequisites	In order that the function block can operate, the receive channel must be sub-divided into at least 2 transmit channels (CT1- and CT2 input data are mandatory).
Data entries at inputs CT3, CT4	When sub-dividing a channel into only 2 channels, a "0" (zero) must be configured at initialization inputs CT3 and CT4. AR3, AR4, MO3, MO4, LT3 and LT4 are, in this case, no longer evaluated.
Data entries at inputs CTS, AT, MOD	The receive channel is specified at inputs CTS, AT and MOD. The length of the net data to be received is obtained from the sum of the transmit data.
NOTE	If one of the transmit channels is configured in the handshake mode and precisely this channel is not read-out on the receive side, then the CDC4 function block cannot operate until this one channel has been read-out. In this case, the block is temporarily inhibited.

3.24.2.3 Compatible net data structure

For blocks CCC4 and CDC4, the net data are unstructured (data type, octet string). Thus, they are compatible to any net data structure. In order that the transmitter and the associated receiver can correctly synchronize with one another, only the net data lengths must be identical.

3.24.3 Diagnostic outputs

General After each processing cycle, the result of the processed data interface(s) is output at the YEV output of the transmit- and receive blocks as well as the channel marshalling blocks (CTV, CRV, CCC4, CDC4). The YEV output is the WORD type; the 16 bits are sub-divided into three areas:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Cl (on	hannel ly CCC	status 24, CD	es C4)	Cha (on	annel a ly CCC	ssignm 24, CD	nent C4)				Fault	cause	•		

Table 3-91Diagnostic outputs

3.24.3.1 Fault/error cause

Hexadecimal value The possible fault/error cause is displayed in bits 0-7 in the form of a hexadecimal value (this should not be evaluated bit-coded):

Hex. Value	Significance	Counter-measure
0	No fault/error, data transfer was successful.	
1	Block was permanently disabled after initialization due to a configuring error or after an internal error (refer to the communications error field or YTS output for detailed information).	Correct configuring.
2	Communications partner not ready or the communications link was physically interrupted (refer to YTS for more detailed information).	Check coupling partner, cables and connector.
3	Communications partner is not transmitting/receiving (depending on the enable input of the communications partner). The function block is not transmitting/receiving because the communications partner has signaled that it is not transmitting data.	Activate the communications partner
4	Only for transmitters: Data cannot be transmitted. Normally, in the handshake/select mode: The communications partner has still not read-out the last data; seldom in the refresh mode: Communications partner is presently reading).	Configure the transmitter to be slower or the receiver to be faster.
5	Only for receivers: No new data could be received (the communications partner hasn't transmitted any new data since the last data was received).	Configure the receiver to be slower or the transmitter faster.
6	Inconsistent data (subrack coupling: when shutting down the master subrack)	None (proceed with new initialization)
7	Only select transmitters: channel occupied. Another function block is presently transmitting.	All select transmitters can coordinate via the enable input.
8	Only multiple receivers: Reception erroneous. Data read-out took too long; in the meantime, the transmitter has already written new data into the channel.	Configure receivers in a faster (higher-priority) sampling time.
9	Still being initiated. Transmit/receive operation was therefore not able to be started.	

Table 3-92 Fault/error cause

Comments to numbers 4 and 5 In the handshake mode, these numbers can sporadically occur which is quite acceptable. This is because full synchronization between the communications partner is not always possible. Receivers and transmitters should operate approximately in the same cycle.

In the refresh mode, these numbers should not occur if the transmitter is always faster than the receiver.

3.24.3.2 Channel assignment

General The area is only used by the CCC4 and CDC4 function blocks. In this case, a number indicates which channel is involved with the error (bits 0-7). As the channel marshalling block can process up to five channels, the numbering is as follows:

Number	Channel
0	Main transmitter/receiver (corresponding to CTS-, AT- or AR- connection data).
1	Transmit/receive part 1 corresponding to the CT1- and AT1- or AR1 connection data)
2	Transmit/receive part 2
3	Transmit/receive part 3
4	Transmit/receive part 4

Table 3-93 Channel assignment

3.24.3.3 Channel statuses

General The area is only used by function blocks CCC4 and CDC4. This indicates which channels are not operating error-free.

In the "channel statuses" range it is specified on which channel faults were identified when processing the channel

This area is bit-structured:

- 1=no fault
- 0=fault

Bit	Channel
11	Transmit/receive part 1
12	Transmit/receive part 2
13	Transmit/receive part 3
14	Transmit/receive part 4
15	Main transmitters/receivers

Table 3-94 Channel statuses

3.24.4 Introduction – "Pointer-based communication blocks"

Up to D7-SYS Version 6, serial or parallel data transfer operations for SIMATIC control systems were configured using the so-called "virtual communication couplings" methods (shown in CFC charts e.g.: "!VNAME.0001").

Exception: The fiber-optic cable drive coupling SIMOLINK is configured using special SIMOLINK blocks.

From D7-SYS Version 6, communication links, for example PROFIBUS-DP, SIMATIC-CPU \leftrightarrow FM 458-1 DP as well as for SIMATIC TDC or T400 and SIMADYN D can be alternatively configured using communication blocks which have become recently available.

In this case, interface data is accessed from the CFC screen using new blocks, which are inter-connected using a special pointer interface.

Both of these configuring methods (virtual interconnections and pointerbased communications) can be used together on the same hardware platform, in the same configuring (application software) and even for the same interface.

3.24.4.1 Principle mode of operation

Telegram blocks (CRV_T, CTV_P and S7RD_P, S7WR_P) allow access to the receiving or to the sending data blocks (telegrams) by providing a pointer to the particular data block.

This pointer is connected to read/write blocks (DRD..., DWR...). Together with an offset, a write block can save the data at its input connection at the required location in the buffer. A read block then retrieves the appropriate data from the specified location of the receive buffer and makes it available at its output.

This means that in principle, a virtual interconnection is replaced by a (read/write) block and a "normal" CFC connection.

3.24.4.2 Applications

Large data Pointer-based communications are especially advantageous where large amounts of data are involved. For large amounts of data, it is simpler and faster to configure and change and interconnections are more flexible.

128 bytes can be transferred from the FM 458-1 DP to the S7-CPU in Access to the I/O each direction via the I/O area of the P bus. area (P bus) for FM 458-1 DP Using the new S7RD P/S7WR P blocks, all 128 bytes can be copied into a buffer using a block and that with an optimized computation time. This buffer can then be accessed flexibly using read/write blocks via the pointer interface. Indexed access is also possible Sub-areas can also be accessed using offset and length data. Saving data in a Data can be saved in a data memory which can be universally used. This data block data memory can then be accessed using read/write blocks via a pointer interface. Several similar buffers can be set-up in this data block. This means, for example, that recipes can be easily saved and called-up.

3.24.4.3 Features of pointer-based communications

- When generating CFC charts, the configuring time and costs are reduced, especially if very many virtual connections had to be generated.
- Connections to the telegram data can be newly inserted and changed online (pointer, buffer offset).
- Communication connections can be copied with or within chart blocks and centrally changed with them. This means that it is especially simple and quickly to configure, for example, similar communication links to a large number of drives.
- Telegram buffer data can be accessed indexed using 2 offset data. This means that extremely simple modular programs (e.g. chart blocks) can be generated and used.
- Larger data quantities can be transparently processed (e.g. blockwise) (copied), e.g. using the copy block CPY_P in data block DB_P.
- For FM 458-1 DP:
 - using "B-Receive" (BRCV) high quantities of data can be transferred from the S7-CPU to the FM 458-1 DP via the K bus.
 - 128 bytes can be simply configured and quickly transferred with low computation overhead via the I/O area of the P bus.
- A special read/write block is available for every data type (BYTE, INT, DINT, REAL).
- Before accessing REAL data, the type is checked.

For all platforms and interfaces of the SIMATIC control systems These configuring possibilities can be principally used for all of the SIMATIC control system platforms. This means FM 458-1 DP,
 SIMATIC TDC, T400 and SIMADYN D. The reason for this is that block processing is independent of the subordinate (secondary) hardware. • For the same reason, this type of block communications can be principally used for all types of serial and parallel data transfer routes, where today "virtual communications" are used.

3.24.4.4 Associated function blocks

The blocks which can be used are arranged under the family names "ZeigrKom" or "PointCom" in the CFC block Catalog.

In order to be able to simply identify and easily assign to this block group, the blocks, whose function already corresponds to existing blocks, and which now output a pointer for this application, have a "**_P**" (pointer) at the end of the name.

Type name	Function
CPY_P	Copying buffer areas
CRV_P	Telegram block, receive (interface processing)
CTV_P	Telegram block, send (interface processing)
DB_P	Data block
DRD	Data Read REAL
DRD_D	Data Read DINT
DRD_I	Data Read INT
DRD_8	Data Read 8*REAL
DRD_8D	Data Read 8*DINT
DRD_8I	Data Read 8*DINT
DRD_BY	Data Read BYTE
DWR	Data Write REAL
DWR_D	Data Write DINT
DWR_I	Data Write INT
DWR_8	Data Write 8*REAL
DWR_8D	Data Write 8*DINT
DWR_8I	Data Write 8*INT
DWD_BY	Data Write BYTE
S7RD_P	Receive 128 bytes via a P bus (only for FM 458-1 DP)
S7WR_P	Send 128 bytes via a P bus (only for FM 458-1 DP)
BRCV	Block data receive via S7 connection (only for FM 458-1 DP)

3.24.4.5 Pointer interface

For pointer-based communications, a pointer is transferred to the telegram data buffer between the blocks involved:

This pointer is actually a pointer which includes a structure, which in addition to the pointer to the net data also has information for monitoring purposes. This data includes, for example, the sampling time, block class, byte/word swap. It has the connection comment "ZeigPuffer".

3.24.4.6 Configuring information and instructions

- The telegram blocks as well as the read/write blocks must be configured in **the same sampling time** in order to ensure consistency (this is checked when initializing).
- Offset data must be carefully entered.
 a) For pointer-based communications, the configuring engineer must precisely observe the offset (in bytes) of the 16-bit value (INT) or 32-bit value (REAL, DINT) to be addressed.
 b) The offset must always be smaller than the buffer size.
 Before accessing buffer data, a check is made as to whether the area (range) has been exceeded because of an offset which has been set too high.
- If data is transferred to a PROFIBUS-DP station or to a SIMATIC CPU, then bytes (for INT) and, where relevant, words of the value to be transferred (for REAL, DINT) must be swapped. The read/write blocks have a "Swap" connection – SWP – for this specific purpose.
- In order to transfer telegrams via an interface, initially, it is sufficient to just configure the telegram block with the appropriate lengths data (CRV_T, CTV_P and S7RD_P, S7WR_P). Read/write blocks still don't have to be configured. This means that the interface can be tested or the computation time load through the interface configured using, for example, few resources.

3.24.4.7 Examples of CFC screenshots

Fig. 3-110 CFC screenshot: Data transfer with telegram blocks and read/write blocks; here, for the interface P bus of the FM 458-1 DP (@CPB); bytes/words must be swapped due to the data management on the SIMATIC-CPU: SWP(Swap)=1

Fig. 3-111 CFC screenshot: Data transfer SIMATIC-CPU \leftrightarrow FM 458-1 DP via P bus I/O area

Fig. 3-112 CFC screenshot: Indexed addressing of the telegram data with 2 offsets

Fig. 3-113 CFC screenshot: Re-saving 2 received telegrams in a data block and single accesses to the data memory

Fig. 3-114 CFC screenshot: Large data quantities received from a SIMATIC CPU via K bus using BRCV

3.25 Communications utility service

Brief description	 Provides a pool of information functions so that the user has access to system information on the CPU. 						
	Resource for start-up (commissioning) and debugging.						
Start-up	The configured data (setpoints/actual values) are displayed and/or changed here, as well as the software optimized (interconnections, controller times modified.						
Debugging	Causes of system faults (crash, run-up problems) and disturbances, where the cause is within the CPU module, can be determined here.						
	All of the communication utility, service activities are controlled via tasks, which are received via a coupling (corresponding to the data entries at the CTS and US inputs).						
	Operator control devices for the communications utility, service:						
	• Windows 95/NT-PC with CFC (e.g. in the test mode)						
	Windows 95/NT-PC with SIMATIC Manager						
	Windows 95/NT-PC with basic IBS (basic commissioning tool)						
Local service	Using CFC, SIMATIC Manager or the basic service tool, it is possible to access a CPU via the local RS232 interface of the CPU. No additional configuring is required.						
NOTE	You can read-out the CPU module information using the CFC and the SIMATIC Manager. Additional information ont he CPU module, refer to the User Documentation "SIMADYN D, Basis software D7-SYS", Section "Diagnostics".						
Central service	Each CPU of this subrack can be accessed via a DUST1- or MPI coupling configured in the subrack.						
	The following must be configured:						
	One per subrack:						
	 DUST1 coupling: One SS4 module and a central block DUST1 coupling "@CSD01" or 						
	 MPI coupling: One SS52/MPI module and a central block MPI coupling "@CSMPI" 						
	At least one per CPU:						
	 "SER" service function block. 						

Additional information

Refer to the Chapter "DUST1 coupling" and Chapter "MPI coupling" for details on the DUST1 and MPI couplings.

3.25.1 **Function block SER**

Data entries at the "SER" function has a coupling connection. It can be configured several times for each CPU. connections

> The CTS input designates the coupling module and the interface via which an operator control device is connected.

A channel name and address stage 1 is specified at input US.

Channel name •

- max. 6 characters
- ASCII characters with the exception of "point" and @
- the channel name on a data interface must be unique.
- Enter "." after the channel name

Address stage 1 •

CPU slot number. The operator control program addresses the _ CPU via this number.

 The	data entry	must hav	e two d	ligits: e	.g. "01",	"02",,	"24".

Example: Configuring with CFC	'CS7.X01'	1 st CPU at slot 1	
		@CSD01 CTS ECL 19200 BDR ECO 240 TWU CDM	
	'CS7.X01'	0 - CDV QTS - SER CTS QTS - 'ser1.01' US YTS - 240 - LT	
	'CS7.X01'	2 nd CPU at slot 4	

'ser2.04'

240 LT

US

YTS

3.25.2 System load, response times

General	Service is actually processed in a sampling time of approximately 32 ms. (The sampling time, specified at the SER blocks is therefore not decisive for processing.) In the sampling time used, the service blocks have a certain computation time available, and more precisely, a maximum of one basic clock cycle (T0).
NOTE	The ratio of the basic clock cycle T0 to the sampling time used defines the CPU performance available and therefore the system load.
Example 1	Basic clock cycle T0=1ms; selected sampling time=32ms
	• Every 32 ms, 1 ms is reserved for the service utility
	 System load=1 ms / 32 ms=0.03125=3.125 %
Example 2	Basic clock cycle T0=2ms; selected sampling time=16ms
	Every 16 ms, 2ms is reserved for the service utility
	• System load=2 ms/16 ms=0.125=12.5 %
Computation time	The computation time available is evenly distributed among all of the service blocks (there is no priority). This means, that as long as time is available, if possible, all SER blocks are executed once. An SER block processes a maximum of one task per each clock cycle. If the reserved computation time isn't fully used, for example, as there is no task to process, then this computation time is made accessible to the system.
Resource distribution	For multiple configuring and simultaneous access to system resources which are only available once (e.g. EEPROM), the first to request a resource is the first to receive it. All others are rejected and an error message is output, at the latest after 1 s ("resource occupied").

3.26 Communications utility time of day synchronization

General	The communications utility, time of day synchronization allows a unified system time to be provided over several SIMADYN D subracks.						
Time	The following can be used as time source:						
	 a time transmitter can be connected via an "Industrial Ethernet" (SINEC H1). 						
	the MM3 communications buffer module						
	the CPU inserted to the far left in a subrack						
	The time is distributed:						
	• within a SIMADYN D subrack via a communications buffer module						
	 to other SIMADYN D subracks via the subrack coupling 						
Function block	Precisely one function block RTCM should be configured per subrack to distribute the system time.						
	Further information to configure function blocks, refer to the user documentation "SIMADYN D, Function Block Library".						
	The following function blocks are used to read-out the system time:						
	RTCABS: absolute time in the date/time of day format						
	RTCREL: relative time in seconds since 01.01.88						

These blocks can be configured as required.

3.27 Communications with SIMATIC Operator Panels

Introduction	A configuring engineer will be shown how to implement a coupling from SIMADYN D to a SIMATIC OP7 using this configuring software example.							
NOTE	Proceed in a similar fashion when configuring couplings to the OP27, OP37 SIMATIC Operator Panels and the TP37 SIMATIC Touch Panel.							
	The example described here, includes all of the available SIMADYN function blocks, and shows how they are essentially used. The functional scope of the configuring software example has been consciously kept extremely low, so that you can quickly get to grips with the subject. It is simply possible to expand the functionality and/or the hardware components. However, the information provided in the applicable function block documentation must be observed.							
	The designations used for data blocks, flags, variables etc. have been randomly selected, and are only binding for this particular configuration software example.							
NOTE	When saving values which have been changed using SIMATIC Ops, this is realized on the SIMADYN D CPU in the SAVE area.							
	• When the battery back-up fails, the configured value at the input is used as default.							
Prerequisites	The structure of these configuring instructions represents the sequence of the various operating steps, with which the complete configuring software can be generated. However, it should only be considered as a recommendation, and is not mandatory.							
	We are assuming that you know how to handle the SIMATIC Manager (including HWConfig and CFC), configuring SIMADYN D as well as configuring OP7 with ProTool/Lite.							
	Literature which is available on these subjects:							
	SIMADYN D User Manuals							
	SIMATIC Equipment Manual OP7/17							
	SIMATIC HMI, User Manual ProTool/Lite configuring software							
3.27.1 Config	uring example							
Functional scope	The configuring software example supports the following OP7 functions:							
	Reading and writing variables							

• Output of operating messages

- Output of alarm messages including acknowledgment
- Interrogating the function keyboard
- Updating date and time

Hardware The following equipment and components are selected and located as follows for the configuration example:

Fig. 3-116 Setting-up the configuring example

3.27.2 Configuring SIMADYN D

General
informationAll of the configuring, which involves SIMADYN D, is made in the
SIMATIC Manager. The work is divided into the "Selecting components in
HWConfig" and "Configuring with CFC" sections.

3.27.2.1 Selecting the components in HWConfig

The configuration example is configured in HWConfig. The standard program inputs can be accepted. The only changes involved:

• Sampling time **T4** of the PM5 = **64ms**

• Highest MPI address of the SS52 = **126** (126 is entered as standard in ProTool/Lite)

The following hardware configuration can be seen after work has been completed in HWConfig:

Slot	🚺 Name	Туре	Order number
1	D01_P1	PM5	6DD1600-0AJ0
1.1	🗊 D01_1	MS5	6DD1610-0AH0
2	🚽 D0200C	CS7	6DD1662-0AB0
	_		
2.1	时 D02_1	SS52-MPI	6DD1688-0AE2
2.2			
2.3			
4			
5			
6			

Fig. 3-117 Screenshot of the completed HWConfig menu

3.27.2.2 Configuring with CFC

After executing "Save and compile" in the "HWConfig", the "D01_P1" symbol was inserted in the SIMATIC Manager below the "SIMADYN D station".

Inserting a new A new chart, called "OP7" is added, in the associated chart container, to the existing charts "@SIMD1" and "@SIMD2". All of the additional configuring work will now be made in a new chart called "OP7".

Fig. 3-118 Screenshot of the completed chart container

Agreements

- All of the function blocks to be configured are configured in the sequence level T4.
- If not explicitly listed, the standard assignments of the function block connections are kept.

• Only the relevant connections are listed in the following configuring tables.

3.27.2.2.1 Initializing the OP7

Brief description The function blocks **@CSMPI** and **S7OS** are connected to the configured coupling module (SS52-MPI on CS7) via the **CTS** inputs. This establishes the connection between SIMADYN D and OP7.

Configured	FB	Connection	Connection assignment (significance)
software	@CSMPI	CTS	D0200C.X01 (global operand module name)
	0700	070	
	\$70\$	CIS	D0200C.X01 (global operand, module name)
		US	testop.01 (address parameter)

Table 3-95Connection assignment @CSMPI and S7OS

CFC chart

Fig. 3-119 Initializing the OP7 on the MPI bus

3.27.2.2.2 Reading function block connections (I/O)

Brief description A counter was configured for this function, which continually increments from the initial value ("0") up to a final value ("50"). It then automatically resets itself and starts again from the beginning. Output **Y** (counter status) of the **CTR** is interlocked with a global operand (OP connection), whose contents are read-out at OP7.

NOTE The flag No., specified under SIMADYN D for the OP connection, must also be assigned the configured variables under ProTool/Lite.

Configuring
softwareFBConnectionConnection assignment (significance)BFT500ms (time constant)CTRLU50 (counter upper limit)YSymbol name: Z_output
Flag No.: MW10
(global operand, OP connection)

Table 3-96 Connection assignment, BF and CTR

CFC chart

Configured software

3.27.2.2.3 Writing function block connections

Brief description A value from OP7 is read-in using a global operand (OP connection), fed through a dummy block (NOP1_I), and is sent back to the OP7 with an additional global operand (OP connection); it is read-out from the OP7.

NOTE The flag No. for the OP connections, specified under SIMADYN D, must also be assigned the configured variables under ProTool/Lite.

FB	Connection	Connection assignment (significance)
NOP1_I	Х	Symbol name: OP_SOLL Flag No.: MW20 (global operand, OP connection)
	Y	Symbol name: OP_IST Flag No.: MW30 (global operand, OP connection)

Table 3-97 Connection assignment, NOP1_I

Fig. 3-121 Writing into function block connections (I/O)

3.27.2.2.4 Configuring events

Brief descriptions If the counter starts a new count loop, an event is output. Output **QO** of function block **CTR** outputs the signal. This signal is extended (FB PDF), converted from the "boolean" format into the "word" format (FB B_W), and transferred to function block **S7EMA** as the first event message word.

The S7EMA is assigned a virtual data block number for the user data area "event messages" via a global operand (OP connection).

NOTE The data block No., specified under SIMADYN D for the OP connection, must also be assigned the configured area pointer for event messages under ProTool/Lite.

Configured	FB	Connection	Connection assignment (significance)
software	PDF	I	Function block CTR , output QO (event message signal)
		Т	5000ms (time constant)
	B_W		(Conversion from boolean to word)
	S7EMA	XDB	Symbol name: BM Data block No: DB1 (global operand, OP connection)

Table 3-98Connection assignment, @CSMPI and S70S

Fig. 3-122 Configuring event messages

3.27.2.2.5 Configuring alarm messages

Brief description If the counter starts a new count loop a alarm message is output (at the same time as the event message) . Output **QO** of function block **CTR** supplies the signal. This signal is converted from the "boolean" format into the "word" format (FB B_W), and is transferred to function block **S7AMA** as the first event message word.

S7AMA is assigned a virtual data block No. for the user data area "alarm messages" via a global operand (OP connection).

NOTE The data block No. for the OP connection, assigned under SIMADYN D, must also be assigned the configured area pointer for alarm messages under ProTool/Lite.

Configured	FB	Connection	Connection assignment (significance)
software	B_W	l1	Function block CTR , output QO (signal for the alarm message)
	S7AMA	XDB	Symbol name: SM Data block No.: DB10 (global operand, OP connection)

Table 3-99Connection assignment, B_W and S7AMA

Fig. 3-123 Configuring alarm messages

3.27.2.2.6 Configuring the function keyboard

Brief description The configuring of the function keyboard includes, on the SIMADYN D side, only the **S7FKA** function block. The actual assignment of the key functions is realized under ProTool/Lite.

S7FKA is assigned, via a global operand (OP connection) a virtual data block No. for the user data area "function keyboard image".

NOTE

The data block No., assigned under SIMADYN D, for the OP connection, must also be assigned the configured area pointer for the function keyboard under ProTool/Lite.

Configured	FB	Connection	Connection assignment (significance)
software	S7FKA	XDB	Symbol name: FK_Tast Data block No.: DB20 (global operand, OP connection)

Table 3-100 Connection assignment, S7FKA

Fig. 3-124 Configuring the function keyboard

3.27.2.2.7 Configuring the interface area

Brief description The time and date of the OP7 is cyclically updated by SIMADYN D using this function. S7IA is assigned, via a global operand (OP connection) a virtual data block No. for the user data area "interface area".

NOTE The data block No., assigned under SIMADYN D, for the OP connection, must also be assigned the configured area pointer for the interface area under ProTool/Lite.

Configured	FB	Connection	Connection assignment (significance)
software	S7IA	XDB	Symbol name: SB Data block No: DB30 (global operand, OP connection)

CFC chart

Fig. 3-125 Defining the interface area

3.27.2.3 Importing the symbol table

General information While configuring the CPU in HWConfig an empty symbol table is automatically set-up, which will later accept the symbol names configured using CFC. The file with the symbol names must then be imported into the symbol table when the CFC has been configured.

Fig. 3-126 "Symbol" icon in the chart container

Symbol editor The symbol editor is opened from the chart container by double-clicking on "Symbols".

> The symbol file (symbol.asc) is loaded in the symbol table using the menu command "Import table ... ".

NOTE If changes are made in the symbol file in the CFC between two compilations, then a message to this effect is output. This message can also be taken from the actual memory path of the symbol file.

> The following diagram shows the complete symbol table of the test software after having been imported:

Ć	🖥 Symt	ool Editor - Version_02\SIM/	ADYN E)-Stat	ion\D	01_P	.\Symbole		_ 🗆 ×
]	[abelle	<u>B</u> earbeiten <u>E</u> infügen <u>A</u> nsich	t E <u>x</u> tra:	: <u>F</u> er	nster <u>I</u>	<u>H</u> ilfe			
l	2	🥭 🔏 🖻 🛍 💌 o	× N ?	AI	e Symb	ole	▼ <u>"</u>	Symbol aufsteigend	
Ī	🚰 Ver:	sion_02\SIMADYN D-Statio	n\D01_	P\	Symbo	le			_ 🗆 ×
I		Symbol	Adre	esse	Date	ntyp	Ko	mmentar	
I	1	OP IST	MW	30	INT		OP7.5.Y		
I	2	OP_SOLL	MW	20	INT		OP7.5.X		
I	3	Z_Ausgabe	MW	10	INT		OP7.3.Y		
I	4	BM	DB	1	DB	1	OP7.11.XDB		
I	5	FK_Tast	DB	20	DB	20	OP7.15.XDB		
I	6	SB	DB	30	DB	30	OP7.4.XDB		
I	7	SM	DB	10	DB	10	OP7.6.XDB		
	8								
Ľ									
D	Drücken Sie F1, um Hilfe zu erhalten.								

Drücken Sie F1, um Hilfe zu erhalten.

Fig. 3-127 Symbol table with imported symbol file

The symbol table is saved and the operation completed using "Save table".

3.27.3 Configuring the OP7 with ProTool/Lite

GeneralThe configuring of OP7 is not described in detail here. If not explicitly
mentioned, when configuring, the standard settings can be taken from
ProTool/Lite.

NOTE For error-free communications, it is absolutely necessary, that the flagand data block numbers, configured in CFC, are transferred for the individual functions, unchanged, into ProTool/Lite.

Symbol table CFC generates a symbol table, in which all of the flags and data blocks used are saved. This symbol table must be imported for the configuring work for ProTool/Lite.

The symbol names, configured in CFC for the OP7 configuring, can now be used in ProTool/Lite.

Configuring software Configured software with displays (including variables to read and write values), event- and alarm messages as well as configured function keys must be generated for the OP7.

The following table provides an overview of the required configuring components with the associated values, harmonized and adapted to the CFC configured software:

Configured software	Setting
Control	SIMATIC S7-300/400
MPI settings	Communications partner slot: 1
Variables to read the function block connections (I/O)	Symbol name: Z_Ausgabe (VAR_1: Format "INT", type "A" area "M", MW10)
Variables to write into the function block connections (I/O)	Symbol name: OP_SOLL (VAR_2: Format "INT", type "E" area "M", MW20)
	Symbol name: OP_IST (VAR_3: Format "INT", type "A" area "M", MW30)
Area pointer, event messages	Symbol name: BM (DB1, DBW0, length "8" words)
Area pointer, alarm messages	Symbol name: SM (DB10, DBW0, length "8" words)
Area pointer, acknowledge PLC	DB10, DBW16, length "8" words
Area pointer, acknowledge OP	DB10, DBW32, length "8" words
Area pointer, function keyboard	Symbol name: FK_Tast (DB20, DBW0, length "1" word)
Area pointer, interface area	Symbol name: SB (DB30, DBW0, length "16" words)

3.27.4 Application information

3.27.4.1 Computation times

GeneralThe computation times of the function blocks are dependent on the
application.

The computation times of the function blocks for an OP7 are listed in the following table. Each additional configured OP7 correspondingly increases the computation time.

	S7OS	S7EMA	S7AMA	S7FKA	S7IA
One OP7	120	2	33	22	18
Each additional OP7	55	2	33	22	18

3.28 Communications with WinCC (MPI)

Overview	You can h station usi an MPI su	You can handle and monitor the proces variables of your SIMADYN D station using WinCC. A WinCC station is connected to SIMADYN D using an MPI subnet via a CS7/SS52 MPI.					
Prerequisites	Configue station include	• Configure your hardware in HWConfig, so that your SIMADYN D station is equipped with a minimum of one CS7- carrier module, which includes, as a minimum, one communications submodule SS52.					
	The co configu	mmunication	ons interconnection using the MPI subn SIMATIC manager.	et must be			
	Additiona on the net 7".	Additional information on the network configuration, refer to "Hardware Configuring with STEP 7".					
Configuring	You will re operator c	You will require the following components so that you can use WinCC for operator control and monitoring of your SIMADYN D station:					
	CFC in	order to de	eclare function block I/O as process var	iables,			
	WinCC	WinCC itself to configure the WinCC station.					
	Additiona on operato SIMATIC I	Additional information on operator control and monitoring, refer to the User Documentation SIMATIC D7-SYS, STEP 7 option packages for D7-SYS, chapter "CFC".					
Initialization	ation Use the following function blocks to initialize the MPI link:						
	• One @ SS52-N	 One @CSMPI central coupling block must be configured for each SS52-MPI. 					
	 One construction SIMAD using a 	One communications block S7OS must be configured for each SIMADYN D CPU and SS52-MPI module, which is to be addressed using a WinCC station.					
	These fun	These function blocks are configured as follows in the CFC:					
	FB	Connecti on	Connection assignment	Example			
	@CSMPI	CTS	Global operand: Subrack name of the CS7 carrier module/connector number with which the SS52 MPI module is inserted in the CS7	D0200C.X01			
	S7OS	CTS	refer to @CSMPI	D0200C.X01			

 Table 3-101
 Connection assignment @CSMPI and S70S

US

NOS

Address parameter. Channel name/slot number of the CPU

Constant: each WinCC station requires a channel

wincc1.01

1

NOTE

- WinCC saves changed values in the SIMADYN D-CPU in the SAVE area.
- When the battery back-up fails, the configured value of the input is used as default value.

3.29 Communications with WinCC (SINEC H1)

Introduction This User Manual shows you how you can couple WinCC to SIMADYN D via a SINEC H1 coupling using a simple example of the configuring software. All of the necessary configuring steps (including the hardware-and software requirements) are described. The handling of the necessary software tools is not described here, but a reference is made to the appropriate User Manuals.

3.29.1 Prerequisites

Software

SIMADYN D channel-DLL	Software prerequisites			
	 WinCC-Systemsoftware: from version 4.02 for Windows 95 und Windows NT 4.0 			
	 SIMATIC-NET-Driver (Industrial Ethernet): TF-1613 / Windows NT 4.0 			
	Order No. (SIMADYN-D-PMC Industrial Ethernet)			
	2XV9450-1WC43-0AX0			
	Further information			
	Siemens AG Industrial Solutions and Services IT Plant Solutions I&S IT PS 3 Werner-von-Siemens-Straße, 60 91052 Erlangen			
	Contact: your IT4Industry Team Phone: +49 (91 31) 7-4 61 11 Fax: +49 (91 31) 7-4 47 57 E-Mail: info@it4industry.de WWW: http://www.it4industry.de			
Tools	PROBI: The configuring package PROBI is component of every SIMADYN D-PMC licence.			
	SINEC NML configuring tool for CSH11			

Table 3-102 Software prerequisites

NOTE

The SIMADYN D-PMC channel-Dll can only be used in conjunction with WinCC V4.02. For the configuring example used here, the channel DLL must be operated with SIMADYN D PMC Ethernet Layer 4 (Win95/NT4.0, TF1613 V3.1). The software is installed via a setup routine, which is provided on the product software floppy disk.

The PMC channel DLL can only be inserted in the tag management from WinCC, if the associated communications driver SIMATIC NET TF1613 is installed. Installation is realized via a setup which is provided on the CD-ROM of the SIMATIC NET product version.

Hardware

PC configuring station:

SIMATIC NET plug-in cable 727-1 for INDUSTRIAL ETHERNET I network card SIMATIC NET CP1613

Table 3-103 Hardware prerequisites

NOTE

A CP1613 must be installed in the PC.

SIMADYN D hardware

System:	SIMADYN D		
Subrack:	SR12.1	12 slots with fan	
Slot 1:	PM6	CPU (with local service interface)	
Slot 1.1:	MS51	4 Mbyte Flash memory module	
Slot 2:	MM11	Communications buffer module	
Slot:	CSH11	SINEC H1 interface	

Table 3-104 Hardware design for the configuring example

3.29.2 Process variables

A SIMADYN D station must be configured and parameterized and a test chart generated using the CFC configuring tool. The hardware configuration is described under **Point 26.1 (SIMADYN D hardware design)**. We will not discuss in detail here how SIMADYN D software is generated using the CFC. If you require further information refer to the SIMADYN D Configuring Instructions [4].

3.29.2.1 SIMADYN D software

The CFC chart for the WinCC link does not have to be realized on a separate chart, but is however recommended as this is more transparent. The following function blocks are required for the coupling between SIMADYN D and WinCC for process variables:

- LI LAN interface block
- VM visualization block
- VI interface block
- VC concentrator block
- CI interface block
- SER02 communications block

The blocks are connected as follows:

(Only the relevant I/O are described)

FB LI	
-------	--

I/O name	Significance	Example
CTS	Name of the interface used (CSH 11)	D0300C
AT	Channel name : ATC01 level 4 : #4 SDCOR1 : NML connection name (refer to the NML configured software)	'ATC01.#4SDCOR1'
AR	Channel name : ATC01 level 4 : #4 SDCOR1 : NML connection name (refer to the NML configured software)	'ARC01.#4SDCOR2'
NA	Maximum number of parallel jobs from WinCC	15
NC	WinCC ID	0
СОМ	Communications medium H1	0
CCV	Connection with VM, connection CVP	<vm.cvp< th=""></vm.cvp<>
CCF	No connection with the FM block	-16#0
ССВ	No connection with the MM block	-16#0

FB VM

I/O name	Significance	Example
NA	Sum of the jobs reserved for the VM	40
NL	No. of LI blocks	1
NV	No. of VI blocks	1
MEM	Default	0
TGL	Default	0
CVP	Connection with LI.CCV,VI.CCV	>(LI.CCV,VI.CCV)

FB VI

I/O name	Significance	Example
CTS	Processor name	D01_P1
AT	Send channel name to the VC	(CMDVCH)
AR	Receive channel name from the VC	ACKVCH
CCV	Connection with VM, connection CVP	′VM.CVP′

FB VC

I/O name	Significance	Example
CTS	Processor name	D01_P1

AT	Send channel name to the VI	´ACKVCH´
AR	Receive channel name from the VI	´CMDVCH´
NC	No. of connected CIs	1
CVP	Connection with CI, connection CCV	>(CI.CCV)

FB CI

I/O name	Significance	Example
CTS	Processor name	D01-P1
AT	Send channel name to the SER02	´CMDH´
AR	Receive channel name from the SER02	´ACKH´
ADT	Data channel name from the SER02	´DATH´
CCV	Connection with VC, connection CVP	<vc.cvp< th=""></vc.cvp<>

FB SER02

I/O name	Significance	Example
CTS	Processor name	D01-P1
AT	Send channel name to the CI	´ACKH´
AR	Receive channel name from the CI	´CMDH´
ADT	Data channel name to the CI	´DATH´
CLT	Length, send channel	116
CLR	Length, receive channel	524
CLD	Length, data channel	432
TPD	For operator control and visualization (HMI)	0
NL	Maximum number of MWLs (measured value lists)	40
NV	Max. number of measured values (connections)	500

NOTE In addition, the @CMM central block must be configured for the buffer memory module and the @CSH11 central coupling block.

FB @CSH11

I/O name	Significance	Example
CTS	Name of the interface used (CSH 11)	´D0300C´
MAA	Industrial Ethernet address (SIMADYN D)	080006010002
CDV	Memory re-structure (1)	0

FB @CPN

I/O name	Significance	Example
CTS	Processor name	´D01_P1´
CDV	Memory re-structure (1)	0

3.29.2.2 Configuring WinCC

For the particular example, it is sufficient to use a basic WinCC configuring software with several input/output fields.

We will not discuss the WinCC configuring software here. If you require further information refer to the comprehensive WinCC Configuring Manuals. We recommend the Getting Started SIMATIC WinCC Manual for an introduction into configuring WinCC.

3.29.3 Binary events

Simadyn D
configuringNo additional configuring is required for process value visualization for
the binary event technique with WinCC. The selection regarding which bit
of a variable initiates which message is realized exclusively in WinCC.
The configuring rules to output process variables remain.

WinCC configuring software In addition to configuring software for the process variables, an ALARM logging configuring software must be generated. We will not discuss the WinCC configuring software here. If you require more detailed information, refer to the comprehensive WinCC Configuring Manuals. We recommend the Getting Started SIMATIC WinCC Manual for an introduction into configuring WinCC.

3.29.4 SIMADYN D messages

3.29.4.1 SIMADYN D configuring software

To output messages from SIMADYN D to WinCC, the WinCC block MM is required in addition to configuring the process value output :

• MM message manager

The blocks are connected as follows :

(Only the relevant connections are described)

FB MM

I/O name	Significance	Example
CTS	Processor name	D01_P1
AR	Channel name	EMPFKANA
	(This is identical with the AT connection of the MSI block)	
NZ	No. of cycles per data transfer	5
NL	No. of connected LI blocks	1
MEM	Diagnostics triplet	0
TGL	Diagnostics triplet	0

CVP	Connection with LI, connection CCV	>LI.CCV

NOTE	In addition, the following must be configured: Central message block
	@MSI, message output block MSI and the message block MERF0.

FB @MSI

I/O name	Significance	Example
CMS	Message system name	MYMELD
СМТ	Message text (this is not output)	
NOM	No. of messages which can be saved	200
SAV Message buffer, buffered RAM		0
RP	Prefix for communication errors	0
MUN	Enable for message entries	1

FB MSI

I/O name	Significance	Example
CMS	Message system name	MYMELD
CTS	Coupling module name	D01_P1
AT	Address parameter	EMPFKANA
RP	Prefix for overflow messages	0
SNV	Output, message number	1
STM	Output, message text	0
STC Output, message text constant length		1
SSF Output format		1
EN	Enable	1
MUN	Enable for message entries	1

FB MERF0

I/O name	Significance	Example
CMS	Message system name	MYMELD
МТ	Message type	1
RP	Prefix	0
RS1	Suffix, incoming message	10001
RS2	Suffix, outgoing message	00005
EN	Message enable	1
IS1	IS1 Message trigger	
SM	Save message	0

3.29.4.2 WinCC configuring software

In addition to the configuring software for the process variables, an ALARM logging configuring software must be generated. The WinCC configuring software will not be discussed here. If you require information refer to the comprehensive WinCC Configuring Manuals. We recommend the Getting Started SIMATIC WinCC Manual for an introduction into configuring WinCC. The assignment of the SIMADYN D message numbers to the message blocks (RS* connections) to the message numbers, generated by WinCC, can only be identified by the "PMC message no", which is generated from the message numbers of the signal list.

3.29.5 Generating the address book using the CFC editor

To generate the signal list for WinCC, ADRIMP requires the symbol information of the SIMADYN processors. For each CPU, SIMADYN D generates an ASCII file, which contains this information. The file name consists of the subrack names and the CPU number, separated by a "_". ".ADR" is used as extension.

The address book is generated by calling-up the required project chart, and selecting the menu items Options - Settings compilation.... Then mark the Option, Create address book, and enter OK. Call-up the menu items Chart compilation. The address book is now created when compiling. The path of the generated address book is then located via the menu items Options - Report.

Restrictions The old STRUC G syntax is assumed when generating the address book. The following restrictions must be observed with respect to the CFC syntax :

- Only upper case letters are permitted for the name
- Chart name: Max 6 characters, the first character must be a letter
- Module name: Max 6 characters, the first character must be a letter

- Connection name: Max 3 characters, the first character must be a letter
- \$ signal name: Max 6 characters, the first character must be a letter
- Scaling range: 0.00001 -- 99999

3.29.6 NML configuring software for CSH11

The configuring tool NML is required to configure the bus for the CSH11 coupling module (with integrated CP1470).

The handling of the NML configuring tool will not be discussed here but if you require further information refer to the NML-CP Manual.

The following configuring software is suitable for establishing a connection between WinCC and SIMADYN D via a CSH11 module using the SINEC H1 protocol (Industrial Ethernet level 4).

ConfiguringSiemens AG SINEC NML V 3.01Documentation communicationssoftware example19.02.1998

- Node type: CP 147x
- Node name: roland
- Page: 1 / 1

Basic node data • Interface type: CP 147x

- Interface name: CP 147x
- Interface profile: CSH11_E4_2000
- Bus address: 080006010002 (SIMADYN D)
- Transport connection.: 6
- Application designation .: 26
- Data basis length: 5888 bytes
- No. of FVTs: 1

Communication relationships

1. Transport connection SDCOR1

- itionsnips
- Local TSAP-ID: AG_WINCC
- Remote TSAP-ID: WINCC_AG
- Remote bus address: 080006010001 (PC)

- Connection set-up: active -> dyn.
- Connection type: E4-connection
- Connection path: Bus
- Profile name: e4_handshake
- No user application relationship assigned

2. Transport connection: SDCOR2

- Local TSAP-ID: WINCC_AG
- Remote TSAP-ID: AG_WINCC
- Remote bus address: 080006010001 (PC)
- Connection set-up: passive <- dyn.
- Connection type: E4-connection
- Connection path: Bus
- Profile name: e4_handshake
- No user application relationship assigned

Using the **Transfer** utility, it is possible to load the communications description, which was previously generated using the communications configuring software, into the CSH11 module.

3.29.7 Address list import tool ADRIMP

In order that WinCC can interpret the addresses of the SIMADYN D path names, the ADRIMP address list tool is required. The ADRIMP address list tool allows text address lists (TALI) to be listed in the WinCC data base. A precise description is provided in the User Manual Communications Driver SIMADYN D-PMC for WinCC.

3.29.7.1 Prerequisites

A variable definition file must exist, and the SIMADYN D address book must have been previously generated. The variable definition file and the address book must be located in the same path. The generation path can be different, but should also be generated in this path to enhance the software transparency.

3.29.7.1.1 Generating the variable definition file

The variable definition file is a text file, which must be generated by the user. The variable definition file consists of two defined header lines (1. and 2.), followed by the assignment of symbolic names to the SIMADYN D connection path names. The symbolic names can be freely selected, but should be the same as those used in the WinCC text fields to ensure transparency.

Excerpt from the variable definition file

E.g.: winccvar.txt

1.) [VDM:wincc]

2.) [PN:A000_1,C:\wincc\vardatei]

3.) MOTOR_EIN, ANBIND.CI.CCV

MOTOR_AUS, ANBIND.CI.YTS

3.29.7.1.2 Generating and importing a new signal list

- **Prerequisites** Before generating and importing the signal list, the SIMADYN D PMC driver must be installed in the WinCC configuring software.
 - Call-up the WinCC configuring software
 - Click-on tag management
 - Click-on the menu item "Add new driver"
 - Select the SIMADYN D PMC Ethernet.chn

If no WinCC configuring software is started before ADRIMP starts, when importing the signal list, the last configuring software which was used, is used.

Execution • Call-up ADRIMP

- Select the "File" menu item
- Select the "Probi" menu item
- Search for the variable definition file (e.g.: winvar.txt)
- Define the generation path
- Generate the signal list (e.g.: wincc.txt)
- Exit Probi

Note ADRIMP automatically imports the signal list into the tag management of the appropriate WinCC data administration.

3.29.7.1.3 Importing an existing signal list

- Start WinCC with the required project
- Call-up ADRIMP
- Select the "File" menu item
- Select the "Open" menu item
- Select the signal list (e.g.: wincc.txt)
- Exit ADRIMP

NOTE ADRIMP automatically imports the signal list into the tag management of the appropriate WinCC data administration.

3.29.7.2 Checking the generated tag management in WinCC

Check the imported data, their symbolic names, data formats and SIMADYN D path names:

- Call-up the WinCC configuring software
- Select the variables tag management
- Click-on the logical connection (corresponds to the VDM name)
- Select SIMADYN D PMC ETHERNET
- Select SD- PMC (CP1613-1)
- Select the logical connection names

The logical names and SIMADYN D path names, defined in the variables file, is displayed. The data formats are also displayed. WinCC can now access these variables.

3.29.8 Communications set-up, SIMADYN D-WinCC

3.29.8.1 Connecting cable

The physical connection between SIMADYN D and WinCC is realized via the SIMATIC NET plug-in cable 727-1 for INDUSTRIAL ETHERNET

3.29.8.2 Activating WinCC

In order to establish communications between SIMADYN D and WinCC, the imported data of the WinCC database must be assigned to the input/output fields of the graphic configuring software. This is realized by selecting the appropriate fields in the Graphics Designer and clicking on the interactive configuration dialog. Each field can be assigned one of the imported variables. After this assignment has been made, the File menu item is selected in the main menu, and the data are saved. Before starting runtime, the connection properties must be set.

In the Control • Click-on tag management Center

Click-on SIMADYN D PMC

- With the righthand mouse key click-on SD-PMC (CP1613-1)
- Click-on properties
- Click-on the properties, Channel Unit
- Click-on the connection

Enter the Ethernet address for the AG (PLC) (refer to the NML configuring software)

Receive function : Enter a dedicated TSAP-ID (refer to NML Configuring)

Send function : Enter a dedicated TSAP-ID (refer to NML Configuring)

- Confirm with OK
- Select "File" in the Control Center
- Click-on activate

WinCC is now ready to transfer data between SIMADYN D and WinCC

3.29.8.3 Activating SIMADYN D

Power-up the configured subracks. After the subracks have run-up, the connection has been established between SIMADYN D and WinCC. Data is now cyclically transferred between SIMADYN D and WinCC.

4 Changeover from STRUC V4.x to D7-SYS

Overview

4.1	Function blocks	4-2
4.2	Adapting specific connection attributes	4-16
4.3	Hardware differences	4-18
4.4	Communications	4-20
4.5	Configuring	4-21
4.6	Configuring, step by step	4-25
4.7	V4.x terminology which is replaced by D7-SYS terminology	4-33

4.1 Function blocks

The following essential features have changed with the introduction of SIMADYN D7-SYS from STRUC Version 4.x.

- 16-bit function blocks are no longer used
- · Assigning names to function blocks and their connections
- Function block names/designations
- DATX attributes have been adapted
- Data types of function blocks have been modified

4.1.1 Assigning names to function block types and connections

The philosophy for assigning names to function block types is that the abbreviations are observed which are allocated by the CFC. The function block type designations are oriented to easy to remember rules.

The maximum length of a block type name is 6 characters. The basic name of the function block type is generally three characters long. An extension can be used for derivatives.

Function block types without extension have the standard data type "Real" e. g. PWM instead of PWM_R. The logic block types are the exception. These have the standard data type "Bool" e. g. OR instead of OR_B.

NOTE The "standard data type" term refers to the "main function" of the function block types.

For versions with other data types, this is noted in the "extension" (e. g. AND_W for an AND module type with WORD data type connections). The extension is normally one character long.

Data type	BOOL	INTEGER	DOUBLE INTEGER	REAL	SDTIME *	WORD	STRING **	GLOBAL **
Extension	*_B	*_I	*_D	*_R	*_T	*_W	*_S	*_G

* SIMADYN D TIME

** At the time of going to print, these data types had still not been used.

Table 4-1Data type extensions

The byte and double-word data types are an exception. In order that they can be uniquely identified, they are defined using two characters (refer to the Section "Changing the data types for function blocks").

Data type	Byte	Double word
Extension	*_BY	*_DW

Table 4-2Exceptions of data type extensions

4.1.2 Control blocks

STRUC V.4.x	CFC with D7-SYS	Pre- assignment *('' = 0)	Comment
Control b	olocks	·	·
PT10F1	PT1		With setting function; new inputs SV, S; function: Yn+1=SV for S=1
DT10F	DT1		With setting function; new inputs SV, S; function: Yn+1=SV for S=1
DIF0F	DIF		
PC_3F	PC	QU = 1; QL = 1;	
INTOF	INT		
PIC2F	PIC	QU = 1; QL = 1;	
LIM0F	LIM	QU = 1; QL = 1;	
DEZ0F	DEZ		
DEL0F	DEL		
RGE0F	RGE		
RGJ0F1	RGJ		
PMW0F	PMW		
FUZ001	FUZ_I		X110 as "INT" (previously "N2"); Y14 as "INT" (previously "N2")
FUZ01F	FUZ		
PT10F			Eliminated; replaced by PT1
STC0F			Eliminated; not replaced

* Corresponds to "0" as pre-assignment of the various parameters of the individual function blocks.

Table 4-3Changes in the control blocks

4.1.3 Arithmetic blocks

STRUC V.4.x	CFC with D7-SYS	Pre- assignment *('' = 0)	Comment		
Arithme	Arithmetic blocks				
ADD2F	-		Eliminated; replaced by ADD		
-	ADD		New; generic at the input side		
ADD4F	-		Eliminated; replaced by ADD		
ADD8F	-		Eliminated; replaced by ADD		
ADDI	-		Eliminated; replaced by ADD_I		
-	ADD_I		New; generic at the input side		
ADDI4	-		Eliminated; not replaced		
SUB0F	SUB				
SUBI	SUB_I				
MUL0F	-		Eliminated; replaced by MUL		
-	MUL		New; generic at the input side		
MULI	-		Eliminated; replaced by MUL_I		
-	MUL_I		New; generic at the input side		
MULI4	-		Eliminated; not replaced		
DIV0F	-		Eliminated		
DIV0F1	DIV	X2 = 1			
DIVI	DIV_I	X2 = 1			
SQR0F	SQR				
SII0F	SII				
AVA0F	AVA				
MAS0F	-		Eliminated; replaced by MAS		
-	MAS		New; generic at the input side		
MIS0F	-		Eliminated; replaced by MIS		
-	MIS		New; generic at the input side		
PLI6F	PLI10		10 instead of previously 6 points		
PLI2F	PLI20				
SIN0F	SIN				
ASINF	ASIN				
COS0F	COS	Y = 1			
ACOSF	ACOS	Y = π/2			
TAN0F	TAN				
ATANF	ATAN				

* Corresponds to "0" as pre-assignment of the various parameters of the individual function blocks.

Table 4-4Change in the arithmetic blocks

4.1.4 Logic blocks

STRUC V.4.x	CFC with D7- SYS	Pre- assignment *('' = 0)	Comment
Logic blo	cks		
AND12	AND12		
AND2	-		Eliminated; replaced by AND
-	AND	l = 1; Q = 1;	New; generic at the input
AND22	-		Eliminated; replaced by AND_W
-	AND_W	IS = 65535 QS= 65535;	New; generic at the input side
AND4	-		Eliminated; replaced by AND
AND8	-		Eliminated; replaced by AND
OR_12	OR_12		
OR_2	-		Eliminated; replaced by OR
-	OR		New; generic at the input side
OR_22	-		Eliminated; replaced by OR_W
-	OR_W		New; generic at the input side
OR_4	-		Eliminated; replaced by OR
OR_8	-		Eliminated; replaced by OR
NAN_2	-		Eliminated; replaced by NAND
-	NAND	l = 1	New; generic at the input side
NAN4	-		Eliminated; replaced by NAND
NAN8	-		Eliminated; replaced by NAND
NOR2	-		Eliminated; replaced by NOR
-	NOR	Q = 1	New; generic at the input side
NOR4	-		Eliminated; replaced by NOR
NOR8	-		Eliminated; replaced by NOR
XOR2	-		Eliminated; replaced by XOR
-	XOR		New; generic at the input side
XOR22	-		Eliminated; replaced by XOR_W
-	XOR_W		New; generic at the input side
NOT	NOT	Q = 1	
NOT02	NOT_W	QS = 65535	
MFP0F	MFP		
PCL0F	PCL		
PST0F	PST		
PDE0F	PDE		
PDF0F	PDF		
PIN8	PIN8		
ETE	ETE		

STRUC V.4.x	CFC with D7- SYS	Pre- assignment *('' = 0)	Comment
FUI	FUI_W		
UDI	UDI		
CTR	CTR		
NCM	NCM_I	QE = 1	X1, X2 as "INT" (previously "N2")
NCM0F	NCM	QE = 1	
NSW	NSW_I		X1, X2, Y as "INT" (previously "N2")
NSW04	NSW_D		X1, X2, Y as "DINT" (previously "N4")
NSW0F	NSW		
ANS	-		Eliminated; replaced by ANS_I
-	ANS_I		New; generic at the input side
ANS0F	-		Eliminated; replaced by ANS
-	ANS		New; generic at the input
BSW	-		Unchanged
MUX8	MUX8_I		X1X8,CCI, Y as "INT" (previously "N2")
MUX8F	MUX8		
DX_8	DX8_I		X, Y1Y8 as "INT" (previously "N2")
DX_8F	DX8		
CNM	CNM_I		X1, X2, Y as "INT" (previously "N2")
CNM04	CNM_D		X1, X2, Y as "DINT" (previously "N4")
CNM0F	CNM		
RSS	RSS	QN = 1	
DFR	DFR		
DFRV	DFR_W		
RSR	RSR	QN = 1	
SAV	SAV_I		X, Y as "INT" (previously "N2")
SAV01	SAV_B		
SAV04	SAV_D		X, Y as "DINT" (previously "N4")
SAV0F	SAV		
-	SAV_TR		New; 32-bit quantities are saved in the NOVRAM of a technology module T400; Porting the P16-FB- SAVN with the main data type "REAL"
DAT0F	DAT		
DLB0F	DLB		
BBF0F	BF		
SBF0F	BF_W		
DTS0F	DTS	DT = 0.01ms	
SHD	SH		

STRUC V.4.x	CFC with D7- SYS	Pre- assignment *('' = 0)	Comment
LVM0F	-		Eliminated; replaced (partially) by LVM
LVM2F	LVM		
DUMY	NOP1_I		X, Y as "INT" (previously "N2")
-	NOP8_I		New;
DUMY1	NOP1_B		
-	NOP8_B		New;
DUMY4	NOP1_D		X, Y as "DINT" (previously "N4")
-	NOP8_D		New;
DUMYF	NOP1		
-	NOP8		New;
THEN	-		Eliminated; replace (indirect) using the sequence group
END	-		Eliminated; replace (indirect) using the sequence group
PAS	PAS		
PAC0F1	PAC		
PAI	PAI		

* Corresponds to "0" as pre-assignment of the various parameters of the individual function blocks.

Table 4-5Changes in the logic blocks

4.1.5 Input/output blocks

STRUC V.4.x	CFC with D7- SYS	Pre- assignment *('' = 0)	Comment
Input/out	put blocks		
-	AENC		New;
BII8	BII8		
BIQ8	BIQ8		
-	BIQT		New;
SBI	SBI		
SBQ	SBQ		
ADC0F	ADC		
AFC0F	AFC		
DAC0F	DAC		
NAV0F	-		Eliminated; not replaced as only for EM11
NAV0F2	NAV		
NAV0F4	NAVS		
NAV0F5	-		Eliminated; not replaced (not included in the V4 standard library)
NAV0F6	-		Eliminated; not replaced (not included in the V4 standard library)
NDB	-		Eliminated; not replaced

* Corresponds to "0" as pre-assignment of the various parameters of the individual function blocks.

Table 4-6Changes in the input/output blocks

The assignment of the input/output blocks to CPU- and peripheral modules is shown in the following table.

Input/output block	CPU- and peripheral modules						
	PM5	PM6	T400	IT41	IT42	EA12	EB11
AENC	х		х				
BII8	х	х	х	х	х		х
BIQ8				х	х		х
BIQT			х				
SBI	х	х	х	х	х		х
SBQ				х	х		х

Input/output block	CPU- and peripheral modules						
ADC			х	х	х		
AFC					х		
DAC			х	х	х	х	
NAV	х		х	х			
NAVS	х		х	х			

Table 4-7 Assignment of the input/output blocks to CPU- and peripheral modules

4.1.6 Communication blocks

STRUC V.4.x	CFC with D7- SYS	Pre- assignment *('' = 0)	Comment
Communic	ation blocks		
@MSC	@MSC	NOM = 15	
MSI	MSI		
MSI2	MSIPRI		
MES	MER1		
MES2	MER_I		X as "INT" (previously "N2")
MES4	MER_D		X as "DINT" (previously "N4")
MESF	MER		
MESV2T	MER16		
MESV4T	-		Eliminated; replaced by MER16
MESV2	MER0		
MESV4	-		Eliminated; replaced by MER0
MED	MERF1		
MED2	MERF_I		X as "INT" (previously "N2")
MED4	MERF_D		X as "DINT" (previously "N4")
MEDF	MERF		
MEDV2T	MERF16		
MEDV2	MERF0		
MEDV4	-		Eliminated; replaced by MERF0
@CTV	-		Eliminated; replaced by CTV
CTV	CTV		Unchanged
@CRV	-		Eliminated; replaced by CRV
CRV	CRV		
CCC4	CCC4		
CDC4	CDC4		
CTB1	-		Eliminated; replaced by NOP8_B
CTB2	-		Eliminated; replaced by NOP8_I

STRUC V.4.x	CFC with D7- SYS	Pre- assignment *('' = 0)	Comment
CTB4	-		Eliminated; replaced by NOP8_D
CTBF	-		Eliminated; replaced by NOP8
@TCI	@TCI	CHA = 200	
@TRI	@TRI		
TRCC2	TRCC_I		X as "INT" (previously "N2")
TRCC4	TRCC_D		X as "DINT" (previously "N4")
TRCCF	TRCC		
@TCP	@TCP	CHA = 200	
TRHI	TRHI		
TRP1	TRP_B		
TRP2	TRP_I		X as "INT" (previously "N2")
TRP4	TRP_D		X as "DINT" (previously "N4")
TRPF	TRP		
@DIS0R	-		Eliminated; replaced by @DIS
@DIS0T	-		Eliminated; replaced by @DIS
-	@DIS		New;
DISA1	-		Eliminated; replaced by DISA_B
DISA2	-		Eliminated; replaced by DISA_I and DISA_W
DISA4	-		Eliminated; replaced by DISA_D
DISAF	-		Eliminated; replaced by DISA and DISA_T
-	DISA_I		New;
-	DISA_B		New;
-	DISA_D		New;
-	DISA		New;
-	DISA_T		New;
-	DISA_W		New;
DISS1	-		Eliminated; replaced by DISS_B
DISS2	-		Eliminated; replaced by DISS_I and DISS_W
DISS4	-		Eliminated; replaced by DISS_D
DISSF	-		Eliminated; replaced by DISS and DISS_T
-	DISS_I		New;
-	DISS_B		New;
-	DISS_D		New;
-	DISS		New;
-	DISS_T		New;
-	DISS_W		New;
DISA11	DISA1B		

STRUC V.4.x	CFC with D7- SYS	Pre- assignment *('' = 0)	Comment
DISA18	-		Eliminated; not replaced
DISS11	DISS1B		
DISS18	-		Eliminated; not replaced
@DPH	@DPH	UP = 1; PHL = 1;	XWS, YWS, SPS as "INT" (previously "N2"); XWL, YWL, SPL as "DINT" (previously "N4")
DPI	DPI		XS, YS as "INT" (previously "N2"); XL, YL as "DINT" (previously "N4")
SER	SER	LT = 242	
RTCM	RTCM	XYR = 97 XMO = 1 XDA = 1	
RTC003	RTCABS		
RTC005	RTCREL		
@NMC	@NMC		
NRI	NRI		
NTC	NTC		
NTD	NTD		
NSI	NSI		
NSL	NSL		
@CSL2A	@CSL2A	MAA = 1; BDR = 3	
@SYL2A	@SYL2A	SEL = 1; CNX = 1	
DIAL2A	DIAL2A	ST1 = 3; ST2 = 3	
@CPN	@CPN		
@CMM	@CMM		
@CEP	@CEP		
@CEP22	-		Eliminated; replaced by @CEP
@CS1	@CS1		
@CS11	-		Eliminated; replaced by @CS1
@CS2	@CS2		
@CS21	-		Eliminated; replaced by @CS2
@CSH11	@CSH11		
@CSL2F	@CSL2F	MAA = 1; BDR = 3	
@CSL2L	@CSL2L	MAA = 1; BDR = 3; AST = 1	
@CSL2D	-		Eliminated; replaced by @CSL2A

STRUC V.4.x	CFC with D7- SYS	Pre- assignment *('' = 0)	Comment
@CSD01	@CSD01	BDR = 9600; TWU = 64	
@CSD02	@CSD02	BDR = 9600; TWU = 64	
@CSD03	@CSD03	BDR = 9600	
@CSD07	@CSD07	BDR = 9600	
@CSU	@CSU	BDR = 9600;	
-	@DRIVE	PCF=1 PTF=1 PEN=1	New;
-	PNAME		New;
-	PLIM	MIN=-1.0e38; MAX=1.0e38	New;
-	PLIM_I	MIN=-32768; MAX=32767	New;
-	PLIM_D	MIN=- 2147483648; MAX=2147483 647	New;
-	PLIM_T	MIN=0.0ms; MAX=1.0e38m s	New;
-	PTRANS		New;
-	CBCONF		New;
-	TFAW		New;
-	RFAW		New;
-	SYNCT4		New;
-	@PEER	BDR = 6	New;
-	@USS_S	BDR = 6; PAR = 1 PZD = 2 CNX = 10	New;
-	@USS_M	BDR = 6;	New;

* Corresponds to "0" as pre-assignment of the various parameters of the individual function blocks.

Table 4-8Changes in the communication blocks

4.1.7 Conversion blocks

STRUC V. 4.x	CFC with D7-SYS	Pre- assignment *('' = 0)	Comment
Convers	ion blocks		
BSC	B_W		
SBC	W_B		
SBW	BY_W		
SWB	W_BY		
I2NF	I_R		
NFI2	R_I		
WDC	I_D		X as "INT (previously "N2"); Y as "DINT (previously ("N4")
DWC04	D_I		X as "DINT (previously "N4"); Y as "INT" (previously "N2")
DWR04	-		Eliminated; not replaced
DWS04	-		Eliminated; not replaced
N2NF	-		Eliminated; not replaced
N4NF	-		Eliminated; not replaced
NFN2	-		Eliminated; not replaced
NFN4	-		Eliminated; not replaced
CBR	SWB_W		
CBR04	SWB_DW		
CBRIF	SWBI		
CBRQF	SWBO		
BNR0F	BNR	STZ = 2; NF = 1;	
I4NF	D_R		
NFI4	R_D		

* Corresponds to "0" as pre-assignment of the various parameters of the individual function blocks.

Table 4-9Changes in the conversion blocks

4.1.8 Diagnostic blocks

STRUC V. 4.x	CFC with D7- SYS	Pre- assignment *('' = 0)	Comment
Diagnos	tic blocks		
STG0F	STG		
RFG0F	RFG		
SQG0F	SQG		
SQGBF	SQGB		
USF	USF		
ASI	ASI		
SYF1	SYF1		
SYF4	SYF4		
PNO	PNO	Y = 1	
SSD	SSD		
PSL	PSL		
-	DLED	LDN = 1	New;
-	EPE		New;

* Corresponds to "0" as pre-assignment of the various parameters of the individual function blocks.

Table 4-10	Changes in the	e diagnostic blocks
------------	----------------	---------------------

4.1.9 SIMOVERT D block

STRUC V. 4.x	CFC with D7-SYS	Pre- assignment *('- ' = 0)	Comment
TRV	-		Eliminated; not replaced

 * Corresponds to "0" as pre-assignment of the various parameters of the individual function blocks.

Table 4-11 Change in the SIMOVERT D block

4.1.10 COROS blocks

STRUC V. 4.x	CFC with D7-SYS	Pre- assignment *('' = 0)	Comment
COROS	blocks		
ARD	ARD		
ARR	ARR		
ARW	ARW		
CHC	СНС		
CI	CI		
ERS1	ERS1		
RS2	ERS2		X, SV, Y as "INT" (previously N2")
FI	FI		
FM	FM		
LI	LI		
MM	MM		
RIB	RIB		
SER02	SER02		
SI	SI		
SI_02	SI_02		X, SV, Y as "INT" (previously "N2")
SI_F	SI_F		
VC	VC		
VI	VI		
VM	VM		
BM	BM		
тсо	TCO		
TRP	TRPCOR		

* Corresponds to "0" as pre-assignment of the various parameters of the individual function blocks.

Table 4-12Changes in the COROS blocks

4.2 Adapting specific connection attributes

The following connection attributes are no longer available in D7-SYS:

- Minimum (MIN),
- Maximum (MAX),
- Format (FORM),
- Signal designator (NAME)
- and LOG texts (LOG0/LOG1)

Specific function blocks of the display utility and the equipment response utility are involved.

4.2.1 Display utility

For the display utility, the attributes involved, "MIN", "MAX", "FORM", " 'Signal designator' (name) " and "LOG0/1" are configured using new connections at the blocks involved.

D7- SYSdesignation	New connections
Process data blocks	
DISA_B	NAMe
DISA_I	NAMe
DISA_W	NAMe
DISA_D	NAMe
DISA	NAMe, FORmat
DISA_T	NAMe, FORmat
DISS_B	NAMe
DISS_I	NAMe, MIN, MAX
DISS_W	NAMe
DISS_D	NAMe, MIN, MAX
DISS	NAMe, MIN, MAX, FORmat
DISS_T	NAMe, MIN, MAX, FORmat
Binary value blocks	
DISA1B	NAMe
	LG0 (LOG0-Text)
DISS1B	LG1 (LOG1-Text)

Table 4-13 Display utility

4.2.2 Equipment response utility

For the equipment response utility, the associated attributes "MIN", "MAX" and " 'Signal designator' (name) " are configured using the new function blocks PLIM, PLIM_D, PLIM_I, PLIM_T and PNAME.

Adapting the DATX The DATX attribute is no longer included in D7-SYS. In order to be able to directly access a connection having a different sampling time using an input, instead of a DATX attribute, a pseudo comment "@DATX" must be configured.

4.2.3 Changing the data types for function blocks

STRUC V.4.x data type (abbreviation)	D7-SYS data type (abbreviation)	Designation
B1	BO	Bool
12	I	Integer
14	DI	Double-Integer
02	1	The function blocks involved have an integer connection.
04	DI	The function blocks involved have a double integer connection.
N2	1	The function blocks involved have an integer connection.
N4	DI	The function blocks involved have a double integer connection.
NF	R	Real
V1	BY	Byte
V2	W	Word
V4	DW	Double-Word
NS	S	String
TF	TS	SDTime
IK, NK, CR, MR, TR, RR	GV	Global

The comparison between the data types of STRUC V. 4.x and D7-SYS is provided in the following table:

Table 4-14 Data type changes as result of the changeover

4.3 Hardware differences

This Chapter describes the hardware differences between STRUC V.4.x and D7-SYS

STRUC V.4.x	CFC with D7-SYS	Comment	
Subracks			
SR4	SR12		
SR6	SR6		
SR12	SR12		
SR24	SR24		
-	SRD	Synonym for T400 master drive configuring	
-	SRT400		
CPU module	S		
-	PM5		
-	PM6		
PM16	PM5		
PG16	PM5/6 + ITDC		
PG26	PM5/6 + ITDC		
PS16	PM5/6 + ITDC		
PT20	PM5/6 + T41/42	For further information refer to the SIMADYN D "Hardware" Manual	
PT20G	PM5/6 + IT41/42 + ITDC	For further information refer to the SIMADYN D "Hardware" Manual	
PT20M	PM5/6 + IT41/42 + MM11/4	For further information refer to the SIMADYN D "Hardware" Manual	
PM3	PM5/6		
PM4	PM5/6		
PT31	PM5/6 + IT41		
PT32	PM5/6 + IT41		
Expansion m	Expansion modules		
IT41	IT41		
IT42	IT42		
-	ITDC		
-	ITSL		

STRUC V.4.x	CFC with D7-SYS	Comment	
Communication buffer modules			
MM11	MM11		
MM21	MM11		
MM3	MM3		
MM4	MM4		
Input/output	modules		
EA12	EA12		
EB11	EB11		
EM11	IT41		
Technology	modules		
T300	T400		
PT10	T400 in the SRT400		
DPM	BB_D	Configuring aid as synonym for T400 configuring	
CS51	CB_D	Configuring help	
DPZ	BB_D		
CSZ	CB_D		
Communicat	ion modules		
CS7	CS7		
CS11	CS12/13/14		
CS12	CS12		
CS13	CS13		
CS14	CS14		
CS21	CS22		
CS22	CS22		
CS41	-		
CSH11	CSH11		
CS61	-		
Special mod	Special modules		
EP3	EP3		
EP22	EP3		
IS_1	IS_1		
IS_2	IS_2		
IS_3	IS_3		
Slot covers	.		
SR81	SR81		
SR82	SR82		
SR83	SR83		

STRUC V.4.x	CFC with D7-SYS	Comment	
Program mer	mory modules		
MS5	MS5		
-	MS51		
MS55	MS5		
MS41	MS5/MS51		
MS45	MS5/MS51		
MS300	-		
Communicat	Communication modules		
SS4	SS4		
SS5	SS5		
SS51	SS52		
SS52	SS52		
Interface sub-modules			
SS1	SS1		
SS2	SS2		
SS31	SS31		

Table 4-15 Har

Hardware changes due to the changeover to D7-SYS

4.4 Communications

The following communication possibilities are no longer available in SIMADYN D7-SYS.

STRUC V.4.x designation	Comment
DUST4	Replacement: SS52, PROFIBUS DP Replacement: SS5, SINEC L2 FDL
DUST5	Replacement: SS4, USS with VD1
DUST6 and ET100	Replacement: SS52, PROFIBUS DP and ET200
Indirect/direct communications	Replacement: Process data
Monitor handling	Replacement: Service
Equipment response and equipment response on T300	Replacement: Equipment response on T400
Communications to SIMOVIS	Not replaced
Redundant serial coupling	Not replaced
Selectable network	Not replaced
System trace	Not replaced

Table 4-16Changes in the communication possibilities

4.5 Configuring

This Chapter describes the differences as far as the configuring is concerned between STRUC V.4.x and D7-SYS.

4.5.1 Configuring tools

The individual configuring tools which were available in STRUC Version 4.x are compared with the appropriate tools in D7-SYS in this Chapter.

Reference point	Tool in STRUC V.4.x	Tool in D7-SYS
Work station	PC with Intel CPU from 486 onwards, min. 20 Mbyte main memory	PC with Intel CPU from 486 onwards, min. 16 Mbyte main memory
	CGM- or Postscript printer	Any Windows 95/NT- compatible printer
	external prommer PP1X	PCMCIA slot (generally included in notebooks, available as card for standard units)
Operating	SCO Open Desktop V. 3.2x	Microsoft Windows 95/NT
system platform	SCO Open Server Release 5	
Installation	Installation program	Menu-prompted setup
Administering project data	Basic dialog	SIMATIC Manager
Configuring the hardware	Master program editor	HWConfig
Configuring the open-loop/ closed-loop control	Function package editor	CFC
Test/start up	FP editor in the IBS G mode	CFC in the test mode
List-oriented editors	STRUC L editors	For D7-SYS, exclusively configured using graphic tools.

Table 4-17Comparison of the configuring tools

4.5.2 Object-oriented handling of the configuring tools

The STRUC V4.x configuring tools are always handled depending on the particular function, i. e. you select a function from the menu (e. g. "Delete block") and then the object to be processed (e. g. the block to be deleted).

Example of objectoriented handling The configuring tools of SIMATIC STEP7 are, just like all Windows 95/NT applications, handled in an object-oriented fashion. You select one or several objects (e. g. blocks to be deleted), and then the action which you wish to execute via the menu (e. g. "Edit > Delete block(s)"). The individual tools offer diverse possibilities to select objects. The selection can either be made via

- menu bar
- context-sensitive pop-up menus
- keyboard commands (hotkeys).

4.5.3 Installation and de-installation

Installation

This section describes the installation and de-installation procedure, step by-step. The sequence is oriented to the "STRUC G installation instructions" to Version 4.x.

in STRUC V.4.x	in D7-SYS
Operating system adaptions	Eliminated
Login as "Superuser"	Not necessary, as the installation is possible without any special access authorization.
Installing a driver for a parallel/serial interface	Not necessary, the required drivers are installed with the automatic hardware identification of Windows 95/NT.
Installing a driver for a CD- ROM drive	Not necessary, required drivers are automatically installed with the automatic hardware identification of Windows 95/NT.
Installing a printer	Is realized using the "Printer assistant" from Windows 95/NT; for further information please refer to help under Windows 95/NT under the subject "Printer, setting-up".
Adapting the parameters of the operating system kernel	Not necessary. Ensure that your PC/PG has the minimum hardware requirements, and use the standard configuration which is set when installing Windows 95/NT.
Configuring a English keyboard	For information, please refer to the help for Windows 95/NT under the subject "Keyboard, layout".
Installing the STRUC G master	Eliminated

in STRUC V.4.x	in D7-SYS
Installing parallel to older versions	Not possible. Only one version of STEP7 (and the option packages for STEP7) can be installed on a PC.
Loading the data medium	Insert the software medium (CD-ROM or floppy disk No. 1) in the drive
init - machine initialization	and start the " Setup " application (in directory " disk1 " of the CD-ROM or in the root directory of the floppy disk).
	The "Setup" installation program guides you through the installation step-by-step. Please observe the product information supplied with the data medium.
print - configuring the printer	Not necessary, all (graphics-capable) printers are available, which you installed under Windows 95/NT, under STEP7 (refer above).
acl - setting access authorization	Not required;
lang - setting the language	Not necessary. You can change the language of the user interface from STEP7 in the SIMATIC Manager at any time (menu command Extras > Settings, Register side "Language").
burn - programmer gets to know the operating system	Not necessary. To load memory modules offline in the CFC, all of the installed PCMCIA slots are available.
Installing software for the programmer	Not necessary. The required drivers are installed with the automatic hardware identification function of Windows 95/NT. Drivers for many commercially available PCMCIA cards are already included in the scope of supply of Windows 95/NT. Drivers for other devices can be obtained from the appropriate suppliers. The "PCMCIA assistant" of Windows 95/NT will help you install the necessary drivers for the PCMCIA slots. For further information, please use the help infos for Windows 95/NT under the subjects "Hardware, setting-up" and "PCMCIA, activating the support for".
Installing the user STRUC G	Not necessary. The installed configuring tools are available at this PC for all users.

 Table 4-18
 Comparison of the installation instructions

De-installation

in STRUC V.4.x	in D7-SYS
Not possible	This is necessary before installing a new product version. If you wish to install a new product version, without having deleted the old version, then you will be appropriately informed at setup. Please follow the instructions in the product information and the help info to Windows 95/NT under the subject "Software, removing from your computer", in order to de- install the SIMADYN D7-SYS software product.

Table 4-19De-installation changes

4.6 Configuring, step by step

The following sections provide an overview for the essential working steps under STEP7 which you already know from configuring with STRUC G V.4.x. Please refer to the appropriate manuals for more detailed information on the individual working steps, as well as the online help of the configuring tool. The sequence is oriented to the Chapter "Brief instructions" of the "STRUC G User Manual", Version 4.x.

4.6.1 Administering the project data

in STRUC V.4.x	in D7-SYS
Start STRUC G (basic dialog)	Start STEP 7 (SIMATIC Manager) In the Windows 95/NT desktop: Double click on the "SIMATIC Manager" icon on the Windows 95/NT desktop or call the program Start > Simatic > Step 7 > SIMATIC Manager via the Windows 95/NT task bar.
Create new project	Create a new project In the SIMATIC Manager: Select the menu command Insert > Program > SIMADYN D program.
Create new master program	Create a new SIMADYN D station In the SIMATIC Manager: In the project window, mark the symbol of the project and select the menu command Insert > Station > SIMADYN D station.
Select libraries	In the CFC: (refer to the Chapter "Configuring the open-loop/closed- loop control")

This section describes the first steps with the configuring tools.

Table 4-20Differences at the start of configuring

4.6.2 Configuring the hardware

in STRUC V.4.x	in D7-SYS
Start the MP editor	Start HWConfig
	In the SIMATIC Manager: Double click-on the SIMADYN D station, just created in the righthand section of the project window, and then on the "Hardware" symbol.
Create a subrack	In HWConfig: Double click in the hardware catalog on one of the SIMADYN D subracks.
Insert the modules	In HWConfig: Select the required slot in the subrack table. Double click in the hardware catalog on the module to be inserted.
Insert sub-modules	In HWConfig:

in STRUC V.4.x	in D7-SYS
	In the subrack table, select the module slot which is to accept the sub-module. In the hardware catalog double click on the sub-module to be inserted.
Define the basic sampling time of the CPU modules	In HWConfig: Double click on the CPU module. In the parameterizing dialog window which opens, select the register side "Basic clock cycle".
Define the sampling times of the CPU modules	In HWConfig: Double click on the CPU module. In the parameterizing dialog window which opens, select the register side "Cyclic tasks".
Define the function package names of CPU modules	Not required; new CFC charts are simply created in the SIMATIC Manager in the chart container of the particular CPU (refer below).
Define FP connections (\$ signals)	Not required; \$ signals for communications between CPUs in the subrack no longer have to be centrally defined. They can be simply used in CFC at the function block connections to be connected.
Define the interrupts from CPU modules	In HWConfig: Double click on the CPU module. In the parameterizing dialog window which opens, select the register side "Interrupt tasks".
Define dimensions (unit texts)	Not required; unit texts no longer have to be centrally defined. They can be simply assigned in CFC when parameterizing function block connections.
Reference MP	In HWConfig you can simultaneously process as many SIMADYN D stations as required. Double click on the SIMATIC Manager on all of the required stations. In HWConfig, you can copy the modules from one station to another.
Print-out master program	Print-out hardware configurations. In HWConfig: Select the menu command Station > Print .
	Comment: The print-out is in the form of a list. It includes, among other things a list of the Order Nos. of all of the configured modules and sub-modules.
Compile master program (in the basic dialog)	Check the hardware configuration for consistency
	In HWConfig: Select the menu command Station > Check consistency.
Exit MP editor	Save the hardware configuration
	In HWConfig: Select the menu item Station > Save . The individual configuring tools of STEP7 (SIMATIC Manager, HWConfig, CFC,) can all be simultaneously opened. Thus, you need not exit HWConfig if you wish to continue in the SIMATIC Manager or CFC.

 Table 4-21
 Differences in the hardware configuration
in STRUC V.4.x	in D7-SYS				
Create a new function package	Create new CFC charts in the chart container of a CPU In the SIMATIC Manager: After you have saved the hardware configuration, you will see, next to the "Hardware" object, symbols in the project window for the CPU modules in the station. Double click on a CPU, and then on the SIMADYN D program in it, and then all of the chart containers in it. Select the menu command Insert > S7 software > CFC .				
Start the FP editor	Start the CFC editor				
	In the SIMATIC Manager: Double click on the CFC chart just created.				
	Import the libraries				
	In the CFC: A newly created chart container already includes the function block types of the FBSLIB standard library. Additional libraries must be explicitly imported into the chart container. Select the menu command Extras > Module types.				
Insert function blocks	In the CFC: Select the menu command View > Catalog to display the function block catalog of the CFC. Select the required function block and drag it with the lefthand mouse key depressed into the work area of a CFC chart.				
Delete function blocks	In the CFC: Select the function block(s) to be deleted and then the menu command Edit > Delete .				
Copy function blocks	In the CFC: Select the function block(s) to be copied and then the menu command Edit > Copy . Then select Edit > Insert and place the copied function blocks at the required position or select the function block(s) to be copied and drag them to the required position with the lefthand mouse key and Ctrl key depressed.				
	You can now copy function blocks from one CFC chart to the next.				
Shift function blocks	In the CFC: Select the function block(s) to be shifted and shift the mouse pointer with the mouse key depressed, to the required position.				
	Comment: You can also shift function blocks from one CFC chart into another chart of the same CPU.				

4.6.3 Configuring the open-loop/closed-loop control

in STRUC V.4.x	in D7-SYS				
Edit comments block	Enter free comments text In the CFC: Select the menu command View > Catalog to display the function block catalog of the CFC. Select the " Text " entry and, with the mouse key depressed, drag it into the work area of a CFC chart. Double click on the text field to enter text. With the shift key depressed, click on the text field to change its size.				
Interconnect function blocks	In the CFC: Click on the function block output, which is to be the source for the interconnection. Then click on the input which is the destination of the connection. Comment: The CFC must be in the sheet view.				
Connect the function blocks to the margin (\$ signals, virtual connections, connections at connectors, types CR, IK, MR, NK, RR, TR)	Create interconnections to global operands (\$ signals, virtual connections, connections at function block connections (I/O), data type GLOBAL) In the CFC: Select the function block connection to be connected. Select the menu command Insert > Connection to operand.				
Parameterize function blocks	In the CFC: Double click on the function block connection. In the dialog window which opens, you can enter a value, comments text to the connection, scaling factor and units text or double click on the function block header. You can now parameterize all the connections (I/O) of this function block in the register side " Connections " of the dialog window which opens.				
Define the sequence in which the function blocks are processed	In the CFC: Double click on the function block header. You can now see the position of the function block in the sequence in which it is executed in the register side " Run-time properties " of the dialog window which opens. You can now remove the function block and insert it at another position in the execution sequence, or select the menu command Edit > Sequence . You can now shift the function blocks to other positions in the execution sequence in the window which opens.				
	Create a run-time group and edit its properties. In the CFC: Select the menu command Edit > Sequence . You can create new run-time groups or change the characteristics/properties of existing run-time groups in the window which opens.				

in STRUC V.4.x	in D7-SYS
Print-out function package	Print-out the CFC chart; in the CFC: Select the menu command Chart > Print to print an individual chart. Select the menu command Chart > Selective print to print several charts of the chart container.
	In the SIMATIC Manager: Select the charts to be printed and select the menu command File > Print .
Change sheet	In the CFC: Select the menu command Edit > Go to > Sheet and select the required sheet.
Change sheet	Change between the overview and sheet view of the CFC: In the CFC: Select the menu command View > Overview or View > Sheet view .
Save function package	CFC charts do not have to be saved. Every change which you make in the CFC is immediately saved.

 Table 4-22
 Changes when configuring the open-loop and closed-loop control

in STRUC V 4 x	in D7-SYS					
Compile the meeter	Check the hardware configuration for consistency					
program (MP- COMP)	In the HWConfig: Select the menu command Station > Check consistency.					
Compile the function packages (FP-COMP)	Not necessary as individual step (refer below)					
Compile the processor program (PN-COMP)	Not necessary as individual step (refer below)					
Compile the selected processor	Compile the user program of a CPU In the CFC:					
(AUTOCOMP)	foreground. Select the menu command Chart > Compile . All of the charts of this CPU are compiled and are then linked with the hardware configuration, which has been checked for consistency as well as the code libraries to form a runnable user program. In so doing, a map listing of the user program is generated. You will be able to identify the path names of the map listing from the compilation protocol.					
Create the address book (OPTIONS address book)	s In the CFC: Select the menu command Extras > Settings > Comp and select the "Create address book" option in the dialo window which opens.					
	When compiling the user program (menu command Chart > Compile) an address book is automatically generated for this CPU. You will be able to identify the path names of the address book file from the compilation protocol.					
Load the program	Loading the user program offline					
module (PROG - selected PN)	In the CFC: Select the menu command Target system > Load . Select the " Offline " option in the dialog window which subsequently opens, and then depress " Load ":					
	The compiled user program, and if relevant, the SIMADYN D operating system are loaded into the memory module. This memory module is then inserted into the PCMCIA slot of your PC.					
Download (PROG	Loading the user program online					
download)	In the CFC: Select the Target system > Load menu command. In the dialog window which opens, select the " Online " option and then depress " Load ": The compiled user program, and if relevant the SIMADYN D operating system are loaded into the CPU memory module via a communications link.					

4.6.4 Compiling and loading the user program

Table 4-23Compiling and loading the user program

4.6.5 Test and start-up

our software is tested and commissioned in Version 3.1x using the CFC			
editor which in this case, has a test mode.			

in STRUC V.4.x	in D7-SYS
Start IBS G (start-up program)	Start the CFC editor; in the SIMATIC Manager: Double click on a CFC chart of the CPU to be tested.
Establish an online connection to the CPUs (IBS G online start)	Changeover into the CFC test mode; in CFC: In the creation mode, select the menu command Test > Test mode . Note: This step must be executed for each CPU which you wish to test.
Interrupt the online connection to the CPUs (IBS G online stop)	Changeover into the creation mode of the CFC; in the CFC: Select, in the test mode, the menu command Test > Test mode .
Display the connector values online	In the CFC test mode: Select the connections to be displayed or function blocks and select the menu command Test > Log-on connections . Select the Test > Monitor menu command to display the actual values of all these connections, logged-on with this CPU, online.
Create the interconnections online	In the CFC test mode: Click on the output of the function block which is to be the source for the interconnection. Then click on the input which is the destination of the connection.
Delete the interconnections online	In the CFC test mode: Click on the function block input, which is the end of the interconnection and then select the menu command Edit > Delete .
Insert the function blocks online	In the CFC test mode: Select the menu command View > Catalog to display the function block catalog of the CFC. Select the required function block and drag it, with the mouse key depressed, to the work area of a CFC chart.
Delete the function blocks online	In the CFC test mode: Remove all interconnections which go from the outputs to the function blocks to be deleted. Select the function block(s) to be deleted and select the menu command Edit > Delete.
Differentiation between temporary and permanent online changes (IBS G OPTIONS as well as changing the "permanent" option in the dialog window "change value").	All online changes are permanently stored in the CFC, i. e. they are saved in the CPU change memory. Even after a CPU has been reset, the executed CPU program and the CFC charts, which were changed online, coincide.
Display the error fields in the "Service IBS" tool	System diagnostics: Display the error fields of a CPU. In the CFC: Select the menu command Target system > Module status and then change to the register side "Error fields".

in STRUC V.4.x	in D7-SYS
Display the exception buffer in the "Service IBS" tool	System diagnostics: Display the exception buffer of a CPU. In the CFC: Select the menu command Target system > Module status and change to the register side " Exception buffer ".
	System diagnostics: Display and change the operating status of a CPU. In the CFC: Select the menu command Target system > Operating status .

Table 4-24Differences in the test- and start-up phase

Performance features which are not supported in D7-SYS The following performance features of STRUC V4.x are not supported in D7-SYS:

- Editing function charts using list-type editors.
- Working with macros.
- Adapting function chart versions to new versions of the function block libraries.
- Functions to extract and compile comment texts in the function diagrams.
- Undo changes in function charts.
- Tabular displays in the CFC test mode.

4.7 V4.x terminology which is replaced by D7-SYS terminology

Terms, which were used in the SIMADYN D environment for Version 4.x are compared in this list, with D7-SYS.

Terminology from Version 4.x	Comparable/new terms	Comment		
Connector	Function block output Output	CAUTION, previously in SIMADYN D up to V4.> "Connector" was used which is now designated "connection" (I/O).		
Interrupt task	Interrupt task			
EEPROM	Change memory			
PSW	User program			
Module	Module			
Board ID	Module name			
Rack	Subrack			
Rack	Subrack			
Output connector	Function block output Output			
Input connector	Function block input Input			
Initialization, run-up	INIT mode			
Cyclic operation	RUN mode			
Processor board, processor	CPU module			
Processor number	CPU number			
Daisy chain connector	Daisy chain jumper			
Connector type	Data type			
Dialog box	Dialog box			
Signal module	I/O module			
Dimensions	Units, units text			
Configuring mode	Create mode			
Message system reference	Name reference			
Promming, loading into the memory module	Offline loading			
Download	Online loading	Loading in the CPU module, loading via a communications link		
Configuring, programming	Configuring			
Interrupt event	Process interrupt			
SIMADYN D program	Chart container	Contrary to an S7- or M7 program, a SIMADYN D program only has a chart container.		
Basic dialog	SIMATIC Manager			
Scaling value	Scaling factor			
Memory-Card,	Memory module			
Memory sub-module	Memory module			

The appropriate explanations can be taken from the glossary.

Terminology from Version 4.x	Comparable/new terms	Comment
System function package, @SIMD	System chart	
Task	Task	The sequence in which the user program is processed (executed) is defined in the tasks.
Generating, generating code	Compiling	
Connection	Interconnection	
Default value	Default	

Table 4-25Modified terminology due to the changeover

5 Closed-loop thyristor current control

Section overview

5.1	Overview	5-2
5.2	Function description	5-6
5.3	Commissioning	5-51
5.4	Special features/issues	5-63
5.5	Interfaces to the power electronics	5-65
5.6	Definitions	5-74
5.7	Abbreviations	5-76
5.8	Appendix	5-77

5.1 Overview

Validity range	The documentation for the closed-loop thyristor current control is valid for Step 7 with D7-SYS \geq version V5.2.0 in conjunction with the CFC program.					
	The closed-loop thyristor current control software can only run in conjunction with the ITDC expansion module.					
	The warning information/instructions in the Instruction Manuals/Operating Instructions of the associated thyristor sets must be carefully observed.					
Introduction	The closed-loop thyristor current control is a standard software package for closed-loop armature current and field current controls of single (1Q) or four-quadrant (4Q) DC drives.					
	The following functions are included in the standard software package CFC Chart "D7-SPTCC"					
	Switch-over logic stage					
	Closed-loop armature current control					
	Closed-loop field current control					
	Gating unit					
	For a 6-pulse, line-commutated drive converter in a B6C or, for two 6- pulse rectifiers in a circulating-current free, anti-parallel, fully-controlled bridge circuit (B6)A(B6)C.					
	This standard software package exchanges ITDC signals with the 6QG2x/6QG3x SITOR sets via the SITOR interface -X7 of the expansion module.					
	These standard software packages should be copied into the user project and supplemented by the application-specific system data and connections to the user program.					
	The gating unit comprises line supply synchronization, actual value sensing and firing pulse generation and requires a clockwise rotating field.					

5.1.1 Hardware configuration

The ITDC converter gating is inserted on a PM5 or PM6 processor and screwed into place. The modules have a local expansion bus (LE bus) via which signals and data are transferred.

Fig. 5-1 Hardware configuration

NOTE 2 ITDC modules cannot be used on a processor module. However, combinations with other expansion modules is permitted (e.g. IT41)

The interface: SE20.2 implements the mechanical conversion and the electrical isolation of the standard SITOR interface from the ITDC to a 6QG5x SITOR cabinet or another drive converter.

SITOR sets 6QG2x and 6QG3x differ in the way that the current actual value is sensed, the conditioning of the zero crossover signals and the phase-to-phase voltages.

If a 6QG2x or 6QG3x SITOR set is used with an optional field device module (excitation option), then the FB FCS is required.

The gating unit has been released for operation with 50 Hz and 60 Hz line supplies (e.g. for PM5); however, it also has automatic frequency adaptation in the range from 10 to 530 Hz.

HW configuration The interrupt, depending on the slot on the PM5/6 should be selected in the "HW Config" software section. The user should make the following settings.

- Interrupt tasks I1: LE bus interrupt L1 (ITDC in the 1st PM slot) or LE bus interrupt L3 (ITDC in the 2nd PM slot)
- Equivalent sampling time
 3.3 ms for 50 [Hz] line frequency
 2.7 ms for 60 [Hz] line frequency

The following settings are made in the standard software package.

- Name: D01_P1 Processor 1 at slot 01
- Sampling time T0: 2.0 ms
- Name: D02_I1 ITDC module Properties, ITDC: Addresses: Digital inputs 1 D02_Bin Speed sensing 1 D02_IncEnc HW of the closed-loop thyristor current control D02_TCCONTR

5.1.2 Software configuration

The software for the standard closed-loop thyristor current control comprises the set from the converter-specific function blocks (FB).

The FBs are programmed in a standard function chart (CFC) for normal applications of a DC drive.

The closed-loop current control should be integrated in the plant/system software. Generally, there is a higher-level closed-loop and open-loop speed control.

Fig. 5-2 Overview of the software configuration

Only the most important connections are shown in the diagram.

The FBs should be programmed in a defined sequence.

FBs EMF, CAV and PC6 have a special internal handshake mechanism to acknowledge computation of the FBs.

Run sequence, function blocks

- 1. PA6 (firing angle actual generation, 6 pulse)
- User-specific FBs for e.g. higher-level speed control loop in this interrupt sampling time.
- 2. EMF (voltage actual value sensing)
- 3. FCS (field current setpoint output), if the option is required.
- 4. SOL (switch-over logic stage)
- 5. CAV (current actual value sensing)
- 6. CSP (current setpoint calculation)
- 7. CPC (current pre-control in the discontinuous range)
- 8. CPI (current controller)
- 9. PC6 (firing angle controller)

Comment FB-PA6 should always be configured at the start of the interruptcontrolled run sequence and FB-PC6 as the last block. Other blocks can also be configured between these blocks depending on the processor utilization.

All of the converter-specific function blocks should be configured, in accordance with the run sequence specified above, in an interrupt task I1 with alarm source LE1 or LE3.

FB–FCS can also be computed in a cyclic task.

The FB–FCS can be removed from the standard software package if the field current setpoint is not to be entered via SIMADYN D (for SITOR sets 6QG2x, 6QG3x without field device option).

The gating unit computation is started by interrupts in synchronism with the firing pulse. In steady-state operation (constant firing angle in 50[Hz] line supplies), the interrupts are every 3.3 ms.

When converting time-dependent quantities, this time data is required to define the interrupts (equivalent sampling time in the I1=3.3 ms for 50[Hz] line supplies or 2.7 ms for 60[Hz] line supplies).

The FB–CPC for pre-control in the discontinuous range can be replaced by a polygon characteristic with a characteristic which has been specifically plotted.

5.2 Function description

All of the converter-specific function blocks are described in this Section.

Parameter defaults The system characteristic quantities are pre-assigned "0" (Default) for example (e.g. rated voltages, rated currents and armature quantities). All of the other parameters are pre-assigned non-critical values (e.g. low controller gains, high integral action times). A list of the parameters to be set is provided in Section 5.3.2. Init connections The blocks have an initialization mode which is executed once after each successful reset / restart. The values at several connections (Initialization connections) are only read-in in the initialization mode; changes at one of these initialization connections (Init) are therefore only effective after a reset **Configuring errors** Each function block checks the entries for plausibility when specific quantities are configured and when conflicts arise, it outputs a fault ID at fault word QSF. All of the fault words are collected in the switch-over logic stage FB SOL and are evaluated. The closed-loop thyristor current control cannot be switched-in if there is a configuring error (refer to Section "SOL, switchover logic stage").

5.2.1 PA6, synchronization

	PA	3			
Hardware address — Mode:V syn ,int./ext. synchr.voltage — Firing pulse number — Offset angle line/synchr.voltage #Failure line periods up to signal #Stabilizing line periods Mode:Line handling #Line periods, average Mode:Rot. field identification Line frequency [Hz]	GV BO I R DI I I R	AD SYX ZPA XDA NEP NCM FAM INV FNT	CTH CTS RDY Y6R XAS AFFI AVW YDA XFN ZDA QSF	я – – ж ж ж ж ж д а д О а а А – – ж ж ж ж ж к к к к к к к к к к к к к	 Time value, firing pulse output Time value, PA6 start Line is ok, enable PC6 60° value of the line periods [16 MHz] Firing angle actual value [ASG] 360° value of the line periods [16 MHz] Time diff. line interrupt [ms] Firing angle, act. value [°] Line filter, phase shift [°] Offset ang. comp. in firing angle act. val. Current duration in the gaps Measured offset angle Measured line frequency Diag.:Synchr. state machine Fault

Fig. 5-3 PA6 represented in the CFC

Function The FB–PA6 is used to continuously synchronize the firing pulses to the line supply for a 6-pulse line-commutated converter. The actual value for the firing pulse position is generated and transferred to the firing pulse controller FB–PC6 in order to evaluate the correct position of the firing pulses. The firing angle actual value is determined taking into account the input filter on the ITDC and the offset angle.

The ITDC generates the interrupt to start FB-PA6 in synchronism to the firing pulses via the local expansion bus (LE) depending on the internal counter states.

Program sections of the gating unit which are always executed.

- A line supply analysis, which checks the availability of the synchronizing voltage and which executes plausibility tests.
- Synchronizing the firing pulses to the synchronizing voltage.
- Determining the offset angle and other line supply quantities.

Synchronization to the line supply (single-phase synchronization) is realized using a synchronizing voltage derived from the electronics power supply of the SITOR set (standard) or with the external synchronization ITDC X5 : $5 \ 6$.

Fig. 5-4 Block diagram of PA6

5.2.1.1 Offset angle

The synchronizing module, which is required for analog gating units is replaced here by entering an offset angle at input PA6.XDA. Using this offset angle, the phase shift between the 6QG2x/6QG3x SITOR set power connection V_{L1} and the single-phase synchronizing voltage derived from the electronics power supply line is compensated.

The offset angle PA6.XDA corrects the phase shift between the natural firing instant of semiconductor device 1 (α =0°) and the zero crossover of the filtered synchronizing voltage (filter on the ITDC). The filter phase shift is a function of the frequency.

Fig. 5-5 Schematic representation of the offset angle in the 50[Hz] line supply

The angle $30[^\circ]$ is specified as a result of the three-phase system. The FB automatically corrects the existing offset $-30[^\circ]$. The remaining deviation should be entered at connection XDA.

e.g.
$$XDA=0.0 \Rightarrow AVW = -30$$
 [°]
 $XDA=10.0 \Rightarrow AVW = -20$ [°]

Comment

The connections of the power section and electronics section of the SITOR set must have the same phase position and the clockwise rotating in order to ensure perfect functioning of the offset angle determination. (e.g. if the phases are interchanged at the electronics power supply, this then incorrectly indicates an incorrect offset angle).

The offset angle between line supply voltage L1 and the filtered synchronizing voltage, which is to be determined when commissioning the system, should be entered at input PA6.XDA in degrees (refer to the Section, Determining the offset angle).

5.2.1.2 Line supply analysis / rotating field detection

The following functions are processed in this program section:

- 1. The filtered, internal synchronizing voltage (V_{SYN}) is monitored
- 2. The line supply is checked for a clockwise rotating field
- 3. The actual offset angle is determined
- 4. The period duration is checked for stability and that the rough limits are maintained

The scope of the monitoring calculations to be executed is parameterized via connection PA6.INV.

- a) If INV=0, the line supply is permanently checked for a clockwise rotating field and the offset angle is determined
- b) If INV=1, a check is made once when starting.
- c) If INV=2, there is no monitoring.

Fig. 5-6 Line supply analysis sequence

Comment After the line supply is switched-in, it is checked, PA6.NEP. If an attempt is made to enable the closed-loop thyristor current control (SOL.ION=1) before this check has been completed, the bits in the fault ID are set at output PA6.QSF. The closed-loop thyristor current control does not go into operation. The firing angle controller and therefore the pulses remain inhibited until a stable line supply is recognized.

Fault signals inhibit closed-loop thyristor current control operation if the line supply analysis was unsuccessful (refer to Fig. 5-4).

Rotating fieldThe closed-loop thyristor current control always requires a clockwisedetectionrotating field!

If there is a counter-clockwise rotating field, a fault signal is output and the closed-loop thyristor current control cannot be switched-in.

The clockwise rotating field is determined from the phase shift of the zero crossovers from L1-L2 (V_{L12}) and L1-L3 (V_{L13}) from the Sitor set.

Fig. 5-7 Zero crossovers of the clockwise rotating field

When determining the phase position between the filtered synchronizing voltage and the zero crossovers of V_{L12} and V_{L13} , the actual offset angle is obtained and is output at PA6.YDA in degrees.

$$PA6.YDA = V_{SYN} - V_{L13} \neq PA6.XDA$$

When making the check, several line supply periods are evaluated. Output PA6.YDA is a monitoring connection for the commissioning phase.

	If the external synchronizing voltage source (ITDC-X5:5/6) (mode:PA6.SYX=1) is used, the signals of the zero crossovers of phase-to-phase voltages V_{L12}/V_{L13} are not available so that the rotating field detection should be suppressed (PA6.INV=2).	
6QG2	For the 6QG3x SITOR sets, the zero crossover signals of phase-to-phase voltages V_{L12} and V_{L13} are smoothed and are therefore phase shifted. This is not the case for 6QG2x types. The calculated offset angle should then be appropriately interpreted.	
Line voltage check	The synchronizing voltage is cyclically monitored and from this value the period duration and line frequency determined.	
	A check is made as to whether the change in its period duration between two consecutive measurements is less than 10 %.	
	For non-stable line supplies, different line supply handling methods can be enabled by making the appropriate selection at the PA6.NCM connector	
	For example, in the operating mode PA6.NCM=2, an average value of the period duration is generated over a parameterizable number of measured values of the period duration. The number of measured values used is specified at connection PA6.FAM (refer to the Table). If larger deviations occur more frequently, then the "Synchronizing voltage erroneous" fault message is output.	
	All of the frequency-dependent quantities are calculated from the new average value of the period duration.	
	The gating unit calculates an internal offset angle which defines the position of α =0° with respect to the line supply. The frequency-dependent phase shift of the synchronizing voltage PA6.AFI, filtered through an RC filter and the offset angle between the line supply and synchronizing voltage PA6.XDA is included in this quantity.	
Line supply quantities	The line supply frequency is emulated using a 16MHz counter (21 bit) [16MHz] in the line supply value (50Hz $\stackrel{\circ}{=}$ 320000) and is output at PA6.NZG. The value for 60° of the periods is calculated from this value for 360°, and is output at PA6.Y6R.	
	The determined line supply frequency [Hz] is output at PA6.XFN. If the line supply value is not smoothed (PA6.NCM=0), the line supply frequency value actual periods can be monitored so that the line supply frequency stability can be evaluated.	
Pulse synchronization	The actual phase position of the output pulses is compared with a reference position (setpoint position), and from this a correction quantity is determined for the pulse position.	

Frequency adaptation	 FB–PA6 operates with the pre-set frequency PA6.FNT until the line supply is connected to the Sitor set. The pre-synchronization, which starts when the line supply is detected, over NEP periods, harmonizes the interrupt frequency to the continuously measured line supply frequency (XFN). If the deviation is <10% of the line supply periods for PA6.NEP times consecutively, the firing angle actual value (PA6.XAS) is enabled for the closed-loop control (FB-PC6) (PA6.RDY). The signal is output as a function of PA6.NEP, but at the earliest after two line supply periods.
Current conduction duration	The current conduction duration PA6.YIT in the discontinuous range is determined from the zero current signal from the Sitor.

Value 1 designates the limit of the non-discontinuous range.

5.2.1.3 Synchronization and pulse generation

The firing pulses for the thyristors for the specified firing angle are generated by the firing angle controller FB–PC6.

The firing angle to be set is available at the firing angle controller input PC6.WAS (= CPI.Y, output of the current controller) in the ASG format and at the control input PA6.AQL in degrees.

The gating unit synchronizes the phase position of the pulses to the line supply once every line supply period. Differences which occur are corrected in the following periods.

Connections PA6.NCM, .FAM are especially used when the drive is operated from weak line supplies.

FAM should be set to 0 for operation from "stable" line supplies.

The switch-over logic changes-over from closed-loop controlled operation to open-loop control SOL.ISE. and also selects a torque direction.

ΡΔ6	Significance	Value\connection
AD	Hardware address	Value (connection
SYX	Mode: Synchronizing voltage source (normally, phase L1 is used)	(Initialization connection/ default: 0)
	SYX=0: Internally via the SITOR interface (ITDC-X7:18,34) SYX=1: Externally via connector (ITDC-X5:5)	
ZPA	Firing pulse number	PC6.ZPA → PA6.ZPA
	No. of the active main pulse for the active torque direction.	{ 16 }
XDA	Offset angle	(Default: 0.0)
	of the specified angle corrects the phase shift between the natural firing instant of semiconductor device 1 and the zero crossover of the filtered synchronizing voltage (ITDC)	{ -180°+180° }
	e.g. XDA=0.0 \Rightarrow AVW = -30 [°] XDA=10.0 \Rightarrow AVW = -20 [°]	
	Offset angle and natural firing instant (α =0°):	
NAZ	Number of failed line supply periods of the synchronizing voltage until a signal is output	(Initialization connection/ default: 8)
	Condition: $0 \le PA6.NAZ \le 3050$, otherwise, QSF\bit $9 = 1$	
NEP	Number of line supply periods until the system can be considered to have stabilized and can be switched-on	(Initialization connection/ default: 5)
	Condition: $0 \le PA6.NEP \le 5000$, otherwise, QSF\bit 9 = 1	
NCM	Mode : Line supply handling(also refer to FAM connector)	(Default: 0)
	Correction of the counter value of the line supply value (period duration and phase) before the result is transferred to FB-PC6.	{ 04 , >4= 0 }
	0 = the line supply value is not handled	
	1 = refer to NCM=4	
	2 = the average value is generated from the last (max.8) line supply values, the number of which is defined at FAM	FAM { ≥1<8 }
	3= line supply value fluctuation are corrected using the PLL method (P controller). The phase difference is only taken into account with 1/FAM.	FAM { ≥1≤1000 }
	4 = line supply value fluctuations are corrected using the PLL method (PI controller). The phase difference is only weighted with 1/FAM and the last average with (FAM-1)/FAM.	FAM { ≥1≤1000 }
	(NCM > 0 is used for weak line supplies or if the synchronizing voltage is polluted.	
	For single synchronizing voltage disturbances, the best suitable setting is NCM=4 with FAM=2040)	
FAM	For NCM=1: Refer to 4	(Default: 0)
	For NCM=2: Number of saved line supply periods to generate the average value	{ ≥1<8 }
	For NCM=3: Factor to reduce a measured phase difference	{ ≥1≤1000 }
	For NCM=4: Factor to reduce a measured phase step	{ ≥1≤1000 }

PA6.	Significance	Value\connection
INV	Rotating field detection mode	(Initialization connection/
	INV=0 continuous monitoring,	default: 0)
	INV=1 the rotating field is defined once when starting	
	INV=2 no monitoring	
FNT	Line supply frequency [Hz] for start of synchronization after the line supply voltage is switched-in	(Initialization connection/ default: 50)
	Condition: $6 \le PA6.FNT \le 600$, otherwise, QSF\bit 9 = 1	
СТН	Firing pulse output, time value (this value changes in each cycle)	PA6.CTH → PC6.CTH (Default: 0)
стѕ	Time value at the start of FB-PA6 (the value changes in each cycle)	PA6.CTS → PC6.CTS (Default: 0)
RDY	Enables the firing angle controller FB-PC6, internal interrupt frequency is harmonized to the line supply frequency	PA6.RDY → PC6.EN (Default: 0)
Y6R	Counter value $\hat{=} 60^\circ \hat{=} 1/6$ of the line supply periods [16 MHz] NZG / 6	PA6.Y6R → PC6.X6R (Default: 0)
XAS	Firing angle actual value [ASG]	PA6.XAS → PC6.XAS (Default: 0.0)
NZG	Counter value $\hat{=}$ line frequency (360°) [16 MHz] (dependent on NCM)	(Default: 0) {50Hz = 320000} {60Hz = 384000}
ТА	Time difference between the actual and last firing pulse [ms]	(Default: 0 ms)
AFP	Firing angle actual value [°]	(Default: 0.0)
AFI	Phase shift angle of the line supply filter ITDC-HW [°]	(Default: 0.0)
	AFI = $\arctan(f / 50 * \tan 60^{\circ})$ (e.g. f = 50Hz ,AFI = 60°)	
AVW	Offset angular component in the firing angle actual value (refer to XDA)	(Default: 0.0)
VIT	AVVV = XDA + 30 - AFI	
YII	(YIT <1 $\hat{=}$ discontinuous current, =1 $\hat{=}$ continuous current)	PA6.YII → CPI.XII (Default: 0.0) { >01<}
YDA	Offset angle, This is calculated from the zero crossovers of the synchronizing voltage and the phase-to-phase line supply voltage. YDA should be equal to XDA.	(Default: 0.0)
XFN	Measured line supply frequency [Hz] = f (NZG)	(Default: 0.0)
ZYA	Diagnostics: Status "Synchronous state machine"	(Default: 0)
ZDA	Diagnostics: Status "Rotating field state machine"	(Default: 0.0)
QSF	Fault	PA6.QSF → SOL.QSA (Default: 16#0000)

Table 5-1 I/O PA6

5.2.2 EMF, voltage - actual value sensing

Fig. 5-8 EMF representation in the CFC

Function

Using the function block FB EMF (Electro Motive Force), the actual output voltage V_d is determined and output at EMF.YUA. The output voltage EMF.YUA is normalized using the system parameters (EMF.RRV,.ARV,.NF) or is output as an absolute value.

The rated system voltage (e.g. rated motor voltage) should be specified at input EMF.ARV; this is referred to the determined voltage values.

The induced voltage (EMF) of the motor is calculated taking into account the ohmic and inductive voltage drop, dependent on current actual value CAV.YC and is output at EMF.YEM.

The "Typical sensing voltage" of the SITOR set should be entered at input EMF.RRV. SITOR sets 6QG2x/6QG3x are equipped as standard so that the V/f converter frequency is increased by 30 kHz at the "Typical voltage" (e.g. 6QG2\3 = 1000V).

The power section supply voltage should be entered at input EMF.AAV.

This is calculated from the no-load amplitude $V_{L13} \cdot \frac{3\sqrt{2}}{\pi}$.

Comments ARV must be > 0.675*AAV, otherwise the "Configuring error" error bit is set at output QSF.

$$\mathsf{ARV} > \frac{3}{\pi\sqrt{2}} \cdot \mathsf{AAV}$$

Fig. 5-9 EMF block diagram

NormalizationFor EMF.NF = 1, the normalized values $\{0 \dots 1\}$ are displayed at outputs
ENF.YEM, .YUA, .YUR, .YUL.
If NF is set to ARV, absolute values $\hat{=}$ [V] are displayed. When the value
is changed-over, this has an effect on the settings of the control
parameters!

$$f_{U} = 60[kHz] + 30[kHz] \cdot \frac{V_{Sitor}}{RRV} \quad \text{Range} : 30 \leftarrow 60 \rightarrow 90 \text{ [kHz]}$$
$$-1*, V = 0, +1*V \text{ rated}$$

The number of pulse edges of this signal are converted into a value, integrating over the time period between two firing pulses.

Calculating the drive converter output voltage from the frequency:

$$\mathsf{EMF.YUA} = \frac{\mathsf{RRC} * \mathsf{NF}}{\mathsf{ARC}} * \left(\frac{\mathsf{f}_{\bigcup} - 60[\mathsf{kHz}] - \mathsf{XFO}}{30[\mathsf{kHz}]}\right)$$

Calculating the induced voltage of the motor *EMF* from the output voltage and the current actual value:

$$V_{EMF} = V_{d} - (R_{A} * I_{A}) - (L_{A} * \frac{di}{dt})$$
 is converted into
EMF.YEM = YUA - YUR - YUL

	With the ohmic voltage drop: $YUR = R_{\sum} * I_{armature} = RA * XC , \text{whereby RA should}$ be calculated with the determined armature resistance: $RA = R_{armature} \left[\right] * \frac{NF (EMF)}{ARV (EMF)} * \frac{ARC (CAV)}{NF (CAV)}$ With the inductive voltage drop: $EMF.YUL = L \frac{di}{dt} = \frac{RA}{TA} * \left(XC_n - XC_{n-1} \right)$
Comment	The inductive voltage drop is only approximately calculated using this formula and is therefore not so precise that this value can be used for other calculations.
	The <i>EMF</i> value is normalized to the no-load line supply amplitude $V_{L13} * \frac{3\sqrt{2}}{\pi} = AAV * \frac{3\sqrt{2}}{\pi}$ and output. EMF.YEV = $\frac{\pi}{3\sqrt{2}} * \frac{\text{RRV}}{\text{AAV}} * \text{YEM}$
Comment	The EMF is determined with a deadtime by sensing the terminal voltage as the average value between two firing pulses. Thus, current actual value oscillations can occur for an EMF angle pre- control at the current controller. This can be avoided if a greater value than the actual armature time constant is configured at input EMF.TA.
Calibration frequency of the V/f converter	The center frequency (60[kHz]) of the V/f converter in the Sitor-converter has an offset. The offset frequency for $V_d=0$ V is available at connection EMF.YFO. EMF.YFO = YFI-60[kHz] - XFO
NOTE	Connection EMF.XFO is an initialization connection and is only valid after a restart \ reset. EMF.XFO should be determined after replacing the SITOR-converter and when commissioning the system.

Instructions are provided in the Section: Voltage sensing calibration.

I/O for EMF

EMF.	Significance	Value\connection
AD	Hardware address	
RRV	Sitor rated voltage of the sensing [V]. (e.g. Sitor = 1000[V] PT = 30[kHz])	(Initialization connection/ default: 0.0)
	Condition: RRV \ge ARV, otherwise, QSF\bit 14 = 1	
ARV	Rated system / motor voltage [V] Condition: RRV ≥ ARV ≠ 0, otherwise, QSF\bit 14 = 1	(Initialization connection/ default: 0.0)
NF	Normalization of the voltage actual value at YUA NF= 1 (YUA = normalized value), NF= ARV (YUA , YEM = absolute value)	(Initialization connection/ default: 1.0)

EMF.	Significance	Value\connection
AAV	Line supply voltage [V].	(Default: 0.0)
	Condition: AAV $\ge \cdot \text{ARV} \frac{\sqrt{2} * \pi}{3}$, otherwise, QSF\bit14= 1	
XFO	Offset frequency of the V/f converter [kHz]	(Initialization connection/
	Measurement for a drive converter output voltage = 0[V] !	
	Calibration/adjustment: XFO = - YFO !	
D 4	Condition: -6 kHz \leq XFO \leq 6 kHz, otherwise, QSF\bit 14 = 1	
RA	(this should be calculated from the determined value)	(Default: 0.0)
TA	Armature time constant [ms]	(Default: 0 ms)
Т	Smoothing time for YEV value (with T=0, smoothing is disabled)	(Default: 20 ms)
хс	Current actual value (with sign) to calculate the voltage drop of armature quantities	CAV.YC → EMF.XC
ACI	Handshake from the PC6 block	PC6.ACO → EMF.ACI
YEM	Calculated EMF actual value YEM = YUA - YUR - YUL	(Default: 0.0)
	(this value is too inaccurate for other calculations as the value calculated for YUL is only approximate!)	
YUA	Drive converter output voltage	(Default: 0.0)
YUR	Ohmic voltage drop across the DC motor YUR = R * I = RA * XC	(Default: 0.0)
	armature	
YUL	Inductive voltage drop across the DC motor $YUL = L\frac{di}{dt} = \frac{RA}{TA} * (XC_n - XC_{n-1})$	(Default: 0.0)
YEV	EMF value normalized to the no-load line supply amplitude	EMF.YEV → SOL.XEV
	YEV = $\frac{\pi}{3\sqrt{2}} * \frac{\text{RRV}}{\text{AAV}} * \text{YEM}$ (smoothed with time T)	(Default: 0.0)
YFU	Frequency of the voltage actual value [kHz] (of the V/f conversion) without correction	(Default: 0.0)
YFO	Offset actual value [kHz] YFO = YFI - 60[kHz] - XFO	(Default: 0.0)
тсс	Measuring time, voltage measurement	(Default: 0 ms)
ACO	Handshake for CAV block	EMF.ACO → CAV.ACI (Default: 0)
QSF	Fault	EMF.QSF → SOL.QSM (Default: 16#0000)

Table 5-2 EMF I/O

5.2.3 SOL, switch-over logic

	SOL			
Hardware address Hold-off time [ms] Pulse cancellation time [ms] Time:M1<>M2 Pulse inhibitE Mode: V <min, undervolti<br="">On commandE Off commandE Off commandE M1 off commandE M2 off commandE M2 off commandE M2 off commandE M2 off commandE M2 off commandE M2 off commandE Mode: EMF sourceE Test mode, controlledE Mode: Current 0, SITOR Y/N=0/1E Current setpoint 1F Current setpoint 2F Threshold MxF Time M0 offT Current actual valueF Calculated EMFF CAV errorV EMF errorV PC6 errorV FCS errorV Error, ext.1E Error, ext.2E Mask, HW fault word Mask, YF1 fault word Mask, YF2 fault word Mask 1, pulse inhibit from YF1V Delete YFx, specific bits Hold state for abs. No</min,>	GTSTSBI BBBBBBBBBBBBRRRTSR WWWWBBBWWWWWBBBI	ADTATH0QONTCPQPLTCDQPSIPLQCEUNMQCSIONQ01IOFQ02ON1QSEON1QSEON2QM1OF2QM2IEFQCCISEYWCNZMYSVDZMZVLWC1ZVAWC2ZVNWC1ZVAWC2QSMQSCQWQSAYF2QSPQFIF1IF2HMHHM1HM2HP1HP2MNEQUIZST	TS BO BO BO BO BO BO BO BO BO BO BO BO BO	 Sampling time, switch-over logic Current controller on = enabled Pulse inhibit, immediately Shift to inverter operation Enable controller Set controller M1 operational M2 operational Test mode, controlled on M0 reached = no setpoint M1 requested Control word PC6 Current setpoint Setting value, current controller Diag.:(n-1)status Diag.:(n+1)status Diag.:(n+1)status Diag.:(n+1)status Diag.:(n word 1 Alarm word 2 Sum, alarm Fault word 2 Sum, faults

Fig. 5-10 SOL represented in the CFC

Function

The switch-over logic stage FB–SOL (Switch Over Logic) controls the sequence when switching-in and switching-out the closed-loop thyristor current control for:

- 4Q drives with drive converters in a circulating current-free antiparallel circuit configuration comprising two fully-controlled threephase bridge circuits
- 1Q drives with drive converter in a fully-controlled three-phase bridge circuit configuration.

4Q drive	Additional tasks are executed for four-quadrant drives (4Q).				
	A torque direction is selected, and				
	 The changeover sequence controlled (shift to inverter operation, pulse inhibit, set controller). 				
	The torque direction is derived from the sign of the complete current setpoint (SOL.WC1 + .WC2) from a higher-level control. The following inter-relationship exists:				
	Positive setpoint Torque direction M1				
	Negative setpoint Torque direction M2				
	If a torque direction is not requested, i.e. the setpoint SOL.WC1+ SOL.WC2 < SOL.WCL, the "virtual torque direction M0" is reached and output SOL.QM0 is set. The outputs QMx are only controlled from the setpoint.				
1Q drive	For 1Q drives, torque direction M2 must be inhibited using a permanent off command SOL.OF2=1.				
	The switch-over logic stage calculates, from the calculated <i>EMF</i> from FB–EMF, a pre-control angle with which the current controller is pre- assigned for torque direction reversal. The value is used with the selection: Permanent intervention for each calculation.				
	The switch-over logic stage executes the following commands for switch- off or changeover:				
	• Shift to inverter operation (current is reduced) (SOL.QPI).				
	 The system waits until the zero current signal is received from the SITOR set (SOL.NZM), as soon as the absolute value of the current actual value (SOL.XC) falls below 3% 				
	The pulses are deleted and the hold-off time SOL.THO started				
	• The new torque direction is switched-in after the hold-off time SOL.THO has expired and the pulse cancellation time SOL.TCP.				
	The no-current interval when the torque reverses is determined by the I=0 signal and the delay times for the thyristors are between approx. 6.6 and 10 ms (this depends on the motor inductance).				
	The closed-loop thyristor current control is only enabled with				
	 the on command from the switch-over logic stage at input SOL.ION, 				
	 the current setpoint SOL.WC1+WC2 > the torque threshold SOL.WCL, and 				
	 there is no off command or fault condition. 				

Fig. 5-11 Function diagram SOL control

Priorities of the switch-on commands	The inputs SOL.ION, .IOF have a higher priority than the other command inputs.
	The switch-off commands for the torque direction SOL.OF1 $\$.OF2 have a higher priority than the enable signals SOL.ON1 $\$ ON2 and always result in the appropriate torque direction being switched-out (disabled).
	Switching combinations which are not plausible are either not executed, or result in the closed-loop thyristor current control being switched-out.
Comment	If the current actual value only decreases very slowly (e.g. closed-loop field controls), then it can occur that the "current=zero" signal of the SITOR set oscillates between binary values "0" and "1". These changeover operations can be suppressed by extending the pulse cancellation time (SOL.TCP). The torque direction is only changed-over if the "holding current" is actually fallen below. SOL.TCP = 2 [ms] corresponds to the standard closed-loop thyristor current control operation for armature supply.

NOTE	To enable the pulses, a jumper ITDC -X5:7 \ 10 must be inserted. An "open-circuit" input is interpreted as "external hardware pulse inhibit" and causes the pulses to be immediately inhibited!		
Changing-over the torque direction	For the torque changeover, the switch-over logic stage sets the current controller (CPI.SV) to the voltage actual value of the <i>EMF</i> , refer to the no-load amplitude, using the signal SOL.QCS. The <i>EMF</i> can also be set, for the current controller as EMF pre-control angle (CPI.SVC=1), into the "continuous tracking" mode.		
Test mode	The controlled test mode is selected with input SOL.ISE = 1. The FB-PC6 firing angle controller immediately executes firing angle PC6.AQL. The torque direction is derived from the sign of the current setpoint if a torque direction (SOL.ON1, .ON2) was not forced.		

I/O

SOL.	Significance	Value\connection
AD	Hardware address	
TH0	Thyristor hold-off time [ms]	(Initialization connection/ default: 10 ms)
TOD	The minister much a summary series time [mec]	
TCP	Condition: 0.0 ms \leq TH0 \leq 20000 ms, otherwise, YW2\bit10=1	default: 2 ms)
TCD	Monitoring time for torque change M1 \Leftrightarrow M2 (inverse > (TCP + THO + TCD) \Rightarrow fault)	(Default: 50 ms)
IPL	Pulse inhibit = 1 is immediately effective! (this is the same as the hardware pulse inhibit ITDC–X5:10.) (At high currents and speed this can result in inverter commutation faults.)	(Default: 0)
UNM	Mode: Handling the undervoltage condition (Sitor)	(Default: 2)
	UNM=0: Undervoltage signal as alarm (YW1\bit 6) UNM=1: Transition into the status: Pulse inhibit UNM=2: Transition into the status: Pulse inhibit + total pulse inhibit (HW-ITDC)	
ION	On command for the closed-loop thyristor current control,	(Default: 0)
	only if IOF = 0. ION is only level controlled!	
	A transition from off \Rightarrow operation is only realized if the sum of the setpoints WC1+WC2 \ge WCL.	
IOF	Off command for the closed-loop thyristor current control	(Default: 0)
	IOF has priority over all of the other control inputs.	
ON1	Enable, only torque direction M1, for OF1 = 0 & OF2 = 0	(Default: 0)
OF1	Off command, torque direction M1 For QON = 1, only negative setpoints are executed.	(Default: 0)
ON2	Only enables torque direction M2, for $OF2 = 0 \& OF1 = 0$	(Default: 0)
OF2	Off command, torque direction M2 For QON = 1, only positive setpoints are executed.	(Default: 0)

SOL.	Significance	Value\connection
IEF	Mode: Use calculated EMF value (FB EMF present) Use the value at XEV for output at YSV	(Default: 1)
ISE	Changes over to the open-loop controlled test mode. The input is only effective for ION=0. Changes at firing angle controller PC6: PC6.AQL=150 [°] (firing angle setpoint in the open-loop controlled mode) The setpoints WC1/2 are not relevant during test operation (ISE=1), only the sign! Alternatively, the torque direction to be controlled can be switched-in (forced) using inputs ON1 and	(Default: 0)
NZM	Zero current signal from the SITOR set, Y/N=0/1 (if NZM=1, no signal is received \Rightarrow time monitoring TCD sets a hardware fault)	(Default: 0)
DZM	Operating signal, double firing from the firing angle control PC6	PC6.DZM → SOL.DZM
WC1	Current setpoint 1 WC1 + WC2 = YWC	(Default: 0.0)
WC2	Current setpoint 2	(Default: 0.0)
WCL	Switch-on threshold for the torque direction (absolute value)	(Default: 0.01)
тмо	Monitoring time for torque direction M0 $(WC1 + WC2 \le WCL) \& (t_{act} > TM0) \Rightarrow QM0 = 1$	(Default: 2000ms)
хс	Current actual value (with sign)	CAV.YC → SOL.XC
XEV	Calculated EMF value (referred to Vdi) for torque reversal and continuous tracking from FB-CPI)	EMF.YEV → SOL.XEV
QSC	Fault word from CAV	CAV.QSF → SOL.QSC
QSM	Fault word from EMF	$EMF.QSF \rightarrow SOL.QSM$
QSA	Fault word from PA6	PA6.QSF → SOL.QSA
QSP	Fault word from PC6	PC6.QSF → SOL.QSP
QSS	Fault word from FCS , if FCS available, (optional for a 6QG3x SITOR set with option: Excitation)	$\begin{array}{l} FCS.QSF \rightarrow SOL.QSS \\ \text{, otherwise} = 0. \end{array}$
IF1	Fault, external 1(appears in YW1\bit 9)	(Default: 0)
IF2	Fault, external 2(appears in YW1\bit 12)	(Default: 0)
НМН	Enables the bits for hardware signaling word YHW and therefore the connection to YW1	(Default: 16#FFFF)
HM1	Enables the bits for fault word YF1	(Default: 16#FFFF)
HM2	Enables the bits for fault word YF2	(Default: 16#FFFF)
HP1	Enables the bits from YF1 for immediate pulse inhibit WARNING: "Inverter commutation faults" possible!	(Default: 16#0020)
HP2	Enables the bits from YF2 for immediate pulse inhibit WARNING: "Inverter commutation faults" possible!	(Default: 16#0040)
MNE	Group inhibit, fault words YF1 and YHW deletes defined bits (refer to the Table under: \emptyset = deleted bits)	(Default: 067E)
QUI	Acknowledges faults YF1 and YF2 The acknowledgment is only realized with ION=0!	

SOL.	Significance	Value\connection	
ZST	Diag.: Stop in the status of the specified number (ZVA)	(Default: 100)	
	(The pre-set value (Default value) can only be modified by trained personnel!)		
ТА	Processing time, switch-over logic stage	(Default: 0 ms)	
QON	Closed-loop current control operational (only enabled if there are no faults and after a switch-on command and setpoints WC1+WC2 > WCL > 0.0)	(Default: 0)	
QPL	Pulse inhibit (the status is displayed at connector ITDC-X5:15 = 0)	(Default: 0)	
QPS	Shift to inverter operation is executed (The firing angle PC6.AWS becomes active.)	(Default: 0)	
QCE	Enables the current controller	SOL.QCE → CSP.EN (Default: 0)	
QCS	Sets the current controller FB-CPI, set or track	SOL.QCS \rightarrow CPI.S SOL.QCS \rightarrow CSP.EN (Default: 0)	
Q01	Torque direction M1 operational (setpoint is switched-through to YWC)	SOL.Q01 → CAV.IM1 (Default: 0)	
Q02	Torque direction M2 operational (setpoint is switched-through to YWC)	SOL.Q02 → CAV.IM2 (Default: 0)	
QSE	Test mode is switched-in	(Default: 0)	
QM0	M0 requested, current setpoint < WCL = neither M1 nor M2 requested	(Default: 0)	
QM1	M1 requested	(Default: 0)	
QM2	M2 requested	(Default: 0)	
QCC	Control word for FB-PC6	SOL.QCC → PC6.ICC (Default: 16#0000)	
YWC	Current setpoint	SOL.YWC → CSP.WC (Default: 0.0)	
YSV	Setting value, current controller even when tracking is switched- in	SOL.YSV \rightarrow CPI.SV (Default: 0.0)	
ZVL	Diag.:(n-1) status	(Default: 0)	
ZVA	Diag.:(n) status , control state machine	(Default: 0)	
ZVN	Diag.:(n+1) status	(Default: 0)	
ZIA	Diag.:Status, interrupt state machine	(Default: 0)	
YHW	Signaling word hardware ITDC (masked by HMH)	(Default: 16#0000)	
YW1	Alarm word 1	(Default: 16#0000)	
YW2	Alarm word 2	(Default: 16#0000)	
QW	Sum, alarm 1 bit in YW1 or YW2 = 1	(Default: 0)	
YF1	Fault word 1 (masked using HM1)	(Default: 16#0000)	
YF2	Fault word 2 (masked using HM2)	(Default: 16#0000)	
QF	Sum, fault signal 1 bit in YF1 or YF2 = 1	(Default: 0)	

Table 5-3 I/O SOL

5.2.3.1 Fault evaluation and protection

Function

All of the faults are concentrated in the switch-over logic stage where they can be evaluated. The faults of the FBs (PA6, EMF, SOL, CAV, PC6, FCS) and two user-specific, external faults (SOL.IF1 \ IF2) and faults from the ITDC hardware are combined to two alarm words YW1 and YW2.

Using the masks HM1, HM2, the bits of alarm words YW1 and YW2 are switched-through into the words for faults YF1 and YF2. Each bit initiates the "Shift to inverter operation" SOL.OPS=1 and results in the closed-loop current control being switched-out. The faults should be acknowledged after the cause has been removed (QUI=1).

Using the selection masks SOL.HP1, .HP2,

the user decides whether the pulses should be immediately inhibited SOL.OPL=1.

If this function is enabled, under certain circumstances it can result in "Inverter commutation faults"!

Fig. 5-12 Function chart SOL - fault evaluation

External faults	The user can disable the closed-loop thyristor current control with fault message at inputs SOL.IF1, .IF2.			
Acknowledging	The system can be switched-in again after a fault has occurred after			
rauit messages	Removing the fault			
	 Acknowledging the fault → 1) 	(signal edge at connection SOL.QUI = 0		
	• Switch-on command $= 0 \rightarrow 1$)	(signal transition at connection SOL.ION		
	All of the faults which are present are displayed at outputs SOL.YW1 and YW2; however, they are not saved. Using these outputs, it can be checked whether a fault has been removed. The faults are only removed from fault words SOL.YF1, .YF2 after acknowledgment and if they have been removed.			
Undervoltage	An undervoltage condition, detected by the SITOR set electronics can be handled as configured at input SOL.UNM.			
	The selection results in different responses to this message:			
	UNM=0: Message: Under	ervoltage as alarm (SOL.YW1\bit 6)		
	UNM=1: Transition into t	he status: Pulse inhibit SW		
	UNM=2: Transition into t total pulse inhib	the status: Pulse inhibit SW + bit (HW-ITDC)		
Temperature monitoring	The "Temperature monitoring" signal is derived from the fan monitoring of the SITOR set and must result in a trip in order to avoid destroying the thyristors as a result of overtemperature.			
	When the fan runs-up, the SITOR electronics suppresses the monitoring signal for approx. 10 s. This is the reason that the fan should be powered-up together with the SITOR set electronics power supply.			
Hardware faults	The faults, detected by the ITDC hardware are enabled with the SOL.HMH mask, and entered into alarm word SOL.YW1. These masked bits are output in word SOL.YHW.			

Significance of fault bits ITDC HMH → YHW

YHW	Fault message → remedy			
Bit 1	Logical 0			
Bit 2 Ø	Fuse monitoring (Sitor) → check whether a fuse has failed			
Bit 3 Ø	Temperature monitoring (Sitor) → check for overtemperature			
Bit 4 Ø	Undervoltage (Sitor) \rightarrow check the line supply values and connector SOL.UNM			
Bit 5 Ø	External pulse inhibit if a voltage is not available at the input			
	\rightarrow ITDC-X5:10 > 15 V $\hat{=}$ pulse enable			
Bit 6 Ø	Logical 0 ≙			
Bit 7 Ø	Hardware Watchdog ITDC			
	Causes: Defective module, \rightarrow replace the module			
	Task overflow in the PMx \rightarrow modify the configured software			
Bit 8	Total pulse inhibit (display: ITDC-X5:15) Cause: Voltage missing, SW pulse inhibit, HW-ITDC fault → remove the fault statuses			
Bit 9-16	Logical 0			
\varnothing = suppressed with MNE=1				

Table 5-4HW faults from the ITDC

Group inhibit, fault word YF1/YF2

If the group inhibit fault word is set (SOL.MNE=1), this permanently deletes the defined bits in fault words SOL.YF1\2.

Fault words

YW1 ,YW2 YF1 , YF2 An alarm message is transformed from YW1 or YW2 into fault message YF1 or YF2 by setting bits 1-16 at SOL.HM1 or SOL.HM2.

The closed-loop thyristor current control is switched-out by a fault message in fault word YF1 or YF2.

Significance of the fault bits YW1, with HM1 \rightarrow YF1

YW1→YF	I Fault message → remedy	Source
Bit 1	Synchronizing voltage not present / failed → check the synchronizing voltage connection (hardware)	PA6
Bit 2 Ø	Erroneous synchronizing voltage Frequency step > 10% / periods → check the synchronizing voltage (hardware)	PA6
Bit 3 Ø	Zero crossovers UL1-2 missing (Sitor) only, if the signal was present once. → check the line supply connection and initialization connection PA6.INV	PA6
Bit 4 Ø	Zero crossovers UL1-3 missing (Sitor) only, if the signal was present once. → check the line supply connection and initialization connection PA6.INV	PA6
Bit 5 ⊘	Rotating field error = no clockwise rotating field of Vsyn., or both zero crossovers missing. (dependent on the mode: INV) → check the line supply connection and initialization connection PA6.INV	PA6
Bit 6 Ø	Undervoltage (Sitor). (dependent on the mode: UNM) → check the line supply values and connector SOL.UNM	SOL
Bit 7 Ø	Logical 0	
Bit 8	Pulse inhibit, software (.IPL = 1) + hardware command: Total pulse inhibit	SOL
Bit 9	Fault, external 1 (SOL.IF1= 1)	SOL
Bit 10 Ø	Fuse monitoring (Sitor) → check for fuse failure	SOL
Bit 11 Ø	Temperature monitoring (Sitor) → check for overtemperature	SOL
Bit 12	Fault, external 2(SOL.IF2 = 1)	SOL
Bit 13	External pulse inhibit for voltage missing at the input + hardware command: Total pulse inhibit → ITDC-X5:10 > 15 V ² enable the pulses	SOL
Bit 14	Excitation current fault (optional for SITOR set 6QG3x with excitation option) Cause: FCS.FC > 5% and field current actual value < 3% FCS.ARC → check the field control/connection	FCS
Bit 15	Hardware Watchdog ITDC + hardware command: Total pulse inhibit Causes: Defective module, \rightarrow replace the module Task overflow in the PMx \rightarrow change the application software	SOL
Bit 16	Hardware command: Total pulse inhibit (ITDC-X5:15) → remove the fault statuses	SOL

Table 5-5 Fault list SOL.YW1 .YF1
Significance of fault bits YW2, with HM2 \rightarrow YF2

YW2→YF2	Fault message → remedy	Source
Bit 1	Hardware fault of the current actual value sensing (Sitor) ITDC: Current actual value has not been latched (saved). Cause: V/f conversion frequency not present	CAV
	\rightarrow check the current actual value sensing (60 kHz) or ITDC	
Bit 2	Overcurrent M1 → check the system values, connector CAV.CX1 and initialization connections CAV: RRC, ARC, NF, XFO, AL1	CAV
Bit 3	Overcurrent M2 → check the system values, connector CAV.CX2 and initialization connections CAV: RRC, ARC, NF, XFO, AL2	CAV
Bit 4	CAV configuring error → check the initialization connections, CAV: RRC, ARC, AL1, AL2, IAV, XF2, NF, XFO	CAV
Bit 5	Hardware fault: Voltage actual value sensing (Sitor) ITDC: Voltage actual value has not been latched (saved). Cause: V/f conversion frequency not present → check the voltage actual value sensing (60kHz) or ITDC	EMF
Bit 6	EMF configuring error \rightarrow check the initialization connections EMF: RRV, ARV, AAV, XFO	EMF
Bit 7	Pulse position error (PC6) Cause: Erroneous pulse position \rightarrow check the line supply values and connectors PC6: DIL, DIZ	PC6
Bit 8	Configuring error \rightarrow AAV voltage specified too high (1.35*AAV > 2*ARU)	
Bit 9	Fault, zero current signal for M1 ↔ M2 (NZM=0, Sitor) or lact >3% → check the zero current signal from the SITOR interface (only with NZM=0)	SOL
Bit 10	SOL configuring error \rightarrow check the initialization connections SOL: TH0, TCP	SOL
Bit 11	SOL block, internal status fault \rightarrow check the ITDC hardware	SOL
Bit 12	FCS configuring error \rightarrow check the initialization connections FCS: RRC, ARC and FC	FCS
Bit 13	PA6 configuring error → check the initialization connections PA6: NAZ, NEP, NWD, INV, FNT	PA6
Bit 14	PC6 configuring error \rightarrow check the initialization connections PC6: LDU, LDL, AWS, DAG, DAW	PC6
Bit15-16	Logical 0	

Table 5-6Fault list SOL.YW2 .YF2

5.2.4 CAV, current actual value sensing

Fig. 5-13 CAV represented in the CFC

Function	Using the function block FB–CAV (Current Actual Value), the current actual value is determined and output at CAV.YC.
	The current actual value is either converted into a voltage at a shunt or using AC current converters in the drive converter and then converted into a frequency. This measured frequency is transferred to the ITDC where it is measured in the hardware.
	The mapping range of the current actual value is $\pm 10[V] = 2^*$ rated current, corresponding to $\pm 30[kHz]$. The frequency at zero current is 60[kHz].
	The average current actual value is determined from the number of pulse edges of the frequency and the time between two firing pulses.
	The "Typical DC current" of the drive converter should be entered at input CAV.RRC. The SITOR sets $6QG2x/6QG3x$ are equipped as standard, so that the frequency of the V/f converter is increased by 15 kHz at the typical DC
	current. At the test socket: lact is output as 5V.
	The rated system/motor current [A] should be specified at input CAV.ARC. All of the current-dependent thyristor current control quantities refer to this value.
Limits	If the current actual value exceeds the limits set at inputs CX1 or CX2, then an "Overcurrent Mx" fault message is output which causes a trip at the FB SOL (standard), or, depending on what has been configured, only an alarm is generated.
Gain error	If the V/f conversion manifests a gain error, this can be corrected, within limits using the data at CAV.AL1 /AL2. The absolute value at CAV.AL1 acts on positive values and the input CAV.AL2, correspondingly for negative values. The thus corrected actual value is provided at CAV.YC.

Fig. 5-14 Function chart CAV

Normalization The normalized current actual value $\{0 ...1\}$ is displayed at output CAV.YC with the value CAV.NF = 1. If NF is set to ARV, the absolute value $\hat{=}$ [A] is displayed. If the value is changed-over, this has an effect on the setting of the controller parameters!

Calculating the drive converter output current:

with
$$f_{I} = 60[kHz] + 15[kHz] \cdot \frac{Sitor}{ARC}$$

Frequency range: $30 \leftarrow 45 \leftarrow 60 \rightarrow 75 \rightarrow 90 [kHz]$
 $-2* -1* I = 0 1* 2* I$
rated

The current actual value YC is calculated as follows:

$$YC = \frac{RRC * NF}{ARC} \cdot \left(\frac{f_{1} - 60[kHz] - XFO}{15[kHz]}\right)$$

Output YC is signed.

Calibration frequency of the V/f converter. The center frequency (60[kHz]) of the V/f converter in the Sitor converter has an offset. The offset frequency for I_A = 0 [A] is available at connection CAV.YFO. YFO = YFI-60[kHz] - XFO When the closed-loop thyristor current control is switched-out (I=0), the frequency at YFO corresponds to the offset error of the V/f converter in the Sitor.

The output only indicates values up to 10% of the system current.

NOTE Connection CAV.XFO is an initialization connection and is only valid after a restart \ reset. CAV.XFO should be determined when commissioning the system and after the SITOR-converter has been replaced.

Instructions are provided in the Section "Current sensing ".

The inverter stability limit is normally permanently specified at FB PC6 **Negative inverter** limit characteristic with a value. If the maximum output voltage is to be used, then the limit must be adjusted as a function of the current, as the overlap angle increases as a result of the extended commutation. This means that the inverter stability limit must be reduced in order to avoid "Inverter commutation faults". A current-dependent inverter stability limit YAU can be calculated for these special applications. 1 1

$$YAU = 180^{\circ} - \left(90^{\circ} - \arcsin\left(1 - \frac{YC}{ARC} * \frac{XF2}{IAV}\right)\right)$$
, with XF2 > 0

The variations of CAV.XF2 are shown in the diagram.

Fig. 5-15 Dynamic inverter stability limit

The data {≥0.7...1.3≤} at connection CAV.IAV results in an additional correction of the dynamic stability limit. The bandwidth of the correction of CAV.IAV decreases with CAV.XF2 \Rightarrow 0.

Line supply changes can be taken into account here.

Comment The inverter stability limit calculation is disabled with XF2=0.0. If the function is required, the connections must be established to FB–CPI.CLU and FB–PC6.AWS.

CAV.	Significance	Value\connection	
AD	Hardware address		
RRC	Rated DC current of the SITOR set [A]	(Initialization connection/	
	Condition: RRC \ge ARC, otherwise, QSF\bit 12 = 1	default: 0.0)	
ARC	Rated system/motor current [A]	(Initialization connection/	
	Condition: RRC \ge ARC \neq 0, otherwise, QSF\bit 12 = 1	default: 0.0)	
NF	Normalization of the current actual value at YC	(Initialization connection/	
	NF= 1 (YC = normalized value), NF= ARC (YC = absolute value)	default: 1.0)	
	Condition: NF > 0, otherwise, QSF\bit $12 = 1$		
XFO	Offset calibration of the V/f conversion frequency [kHz]	(Initialization connection/	
	calibration: XF0 = - YFO! Value measured at I=0 A!	default: 0.0) $(>-6.0 + 6.0 <)$	
	Condition: -6 kHz \leq XFO \leq 6 kHz, otherwise, QSF\bit12=1 (max. 10% of the rated frequency)	{2-0.0+0.05}	
XF2	Current-dependent inverter stability limit [1]	(Initialization connection/	
	XF2 corresponds to the "inductive voltage drop" of the converter. XF2=0 % \Rightarrow stability limit calculation disabled. This intervention is not required for standard applications.	default: 0.0) {≥0.0…0.2≤}	
	Condition: $0.0 \le XF2 \le 0.2$, otherwise, QSF\bit 12 = 1		
IAV	Correction for the stability limit [1] Line supply changes can be taken into account here. The bandwidth always decreases with CAV.XF2 \Rightarrow 0. Line supply changes can be taken into account here.	(Initialization connection/ default: 1.0) {≥0.71.3≤}	
	Condition: $0.7 \le IAV \le 1.3$, otherwise, QSF\bit 12 = 1		
AL1	Positive correction of the gain, current actual value sensing	(Initialization connection/	
	Condition: $-0.1 \le AL1 \le 0.1$, otherwise, QSF\bit 12 = 1	default: 0.0)	
AL2	Negative correction of the gain, current actual value sensing	(Initialization connection/	
	Condition: $-0.1 \le AL2 \le 0.1$, otherwise, QSF\bit 12 = 1	default: 0.0)	
CX1	Max. current for torque direction M1 (absolute value)	(Default: 0.1)	
	(observe the normalization!)		
CX2	Max. current for torque direction M2 (absolute value)	(Default: 0.1)	
	(observe the normalization!)		
IM1	Torque direction M1 operational \Rightarrow "+" = CX1 is used.	SOL.Q01 → CAV.IM1	
IM2	Torque direction M2 operational \Rightarrow "-" = CX2 is used.	SOL.Q02 → CAV.IM2	
ACI	Handshake from the EMF block	EMF.ACO → CAV.ACI	
YC	Current actual value (with sign)	$\begin{array}{c} CAV.YC \to CPI.XC \\ \to SOL.XC \\ \to EMF.XC \\ (Default: \ 0.0) \end{array}$	

CAV.	Significance	Value\connection
YFI	Frequency [kHz] of the V/f conversion of the current actual value (uncorrected value)	(Default: 0.0)
YFO	Offset actual value [kHz] YFO = YFI - 60[kHz] - XFO When the closed-loop thyristor current control is switched-out	(Default: 0.0)
	(I=0), the frequency at YFO corresponds to the offset error of the V/f converter in the Sitor. The output only indicates values up to 10% of the system current.	
YAU	Limit of the current-dependent inverter stability limit [°] is used, in conjunction:	(Default: 0.0) CAV.YAU → CPI.CLU → PC6.AWS
тсс	Internal measuring time of the current actual value conversion [ms]	(Default: 0 ms)
ACO	Handshake for PC6 block	CAV.ACO → PC6.ACI (Default: 0)
QSF	Fault	CAV.QSF → SOL.QSC (Default: 16#0000)

Table 5-7 I/O CAV

5.2.5 CSP, current setpoint calculation

Fig. 5-16 CSP represented in the CFC

Setpoint	The current setpoint (SOL.YWC) is limited to the absolute value of the current limits CSP.WCU and CSP.WCL.
smoothing	To smooth the setpoint, the difference between setpoint CSP.WC and the CSP.YCW current setpoint, output in the previous cycle, is formed and is output at CSP.YE.
	The difference, compared with parameter GLI, decides the change of output YCW If the difference > GLI, then the value of GLI is output. If the difference < GLI, but, > GLI/2, this is limited to GLI/2. If the difference <gli 2,="" any="" correction.<br="" is="" this="" transferred="" without="">The result is added to output YCW with the correct sign. The absolute value of the smoothed and limited current setpoint is output at CSP.YCW.</gli>

Fig. 5-17 Function chart CSP

If the difference > +IL or < -IL, the integrator component of the current signal is inhibited in the particular direction with signals QIU or QIL.

Setpoint smoothing with setpoint step WC

Fig. 5-18 Setpoint smoothing with steps in the setpoint

I/O

CSP.	Significance	Value\connection
AD	Hardware address	
wc	Current setpoint (with sign)	SOL.YWC → CSP.WC (Default: 0.0)
WCU	Positive current limit (absolute value)	(Default: 1.0)
WCL	Negative current limit (absolute value)	(Default: 1.0)

CSP.	Significance	Value\connection
GLI	Gradient for the setpoint smoothing The actual value from WC is used for the calculation.	(Default: 0.6)
IL	Gradient for the integrator inhibit	(Default: 0.6)
EN	Enable	SOL.QCS → CSP.EN (Default: 1)
YCW	Smoothed current setpoint (absolute value)	$\begin{array}{l} \text{CSP.YCW} \rightarrow \text{CPI.WC} \\ \text{CSP.YCW} \rightarrow \text{CPC.WC} \end{array}$
YE	Difference: WC – YCW (with sign)	
QCL	Pos. or neg. current limit reached	
QIU	Integrator inhibit of the CPI, positive values	CSP.QIU → CPI.ILU
QIL	Integrator inhibit of the CPI, negative values	CSP.QIL → CPI.ILL
ZVA	Diagnostics: Status	

Table 5-8 I/O CSP

5.2.6 CPC, current pre-control

Fig. 5-19 CSP represented in the CFC

Function

The function block FB CPC (Current Pre-Control) calculates a pre-control angle for the discontinuous current range from the current setpoint.

The control loop has a different behavior in the discontinuous range than outside this range. In the discontinuous range, characteristic Vd / Id no longer has a linear relationship. The current controller is optimized for the continuous current range. This means that either the controller has to be adapted, or the firing angle must be pre-controlled corresponding to the current setpoint.

The FB calculates a pre-control angle according to the following formula:

$$Y = ALP \left(\frac{1 - \frac{2}{\pi} * \arcsin\left(1 - \frac{WC}{4 * VCI * NFI}\right)}{1 - \frac{2}{\pi} * \arcsin\left(1 - \frac{1}{4}\right)} - 1 \right)$$

NFI = internal current normalization FB - CAV

Fig. 5-20 Characteristic of the current pre-control

The output CPC.Y must go to zero at the discontinuous limit (PA6.YIT<1), as otherwise the pre-control and the controller would oppose each other. This could result in current spikes. The value at CPC.VCI must correspond to the current setpoint at the end of the discontinuous range.

I/O

Note

	Significance	Value\connection
AD	Hardware address	
wc	Current setpoint (absolute value)	CSP.YCW → CPC.WC
VCI	Current setpoint at the discontinuous limit, normalized to the motor current CAV.ARC (The discontinuous limit should be determined using PA6.YIT.) This function is switched-out with the value = 0.	(Default: 0.1) {0 < VCl < discontinuous limit}
ALP	Pre-control angle in the discontinuous range [°], start when the current starts to flow	(Default: 25.0) {≥25°…30°≤}
Y	Pre-control angle in the discontinuous range [ASG]	CPC.Y → CPI.CPC

Table 5-9 I/O CPC

5.2.7 CPI, current controller

Fig. 5-21 Representation of CPI in the CFC

Function	The function block FB CPI (Current PI Controller) implements a PI controller with a pre-control and setting input. The current controller only uses the absolute value of the current setpoint. The I component of the controller can be permanently disabled using CPI.PC=1.
	For large setpoint changes, the integrator can be briefly held using CPI.ILL or CPI.ILU. This prevents the integrator integrating out of control. The inputs only limit the values in "their direction".
	The firing angle limits are entered at CPI.ALL and CPI.ALU as well as at a higher-level at the firing angle controller PC6.LDU and PC6.LDL.
Comment	Internally, the integrator is <u>not</u> limited by the control limits CPI.ALU or CPI.ALL. The integrator value runs up to the format limit (R=+-3,4e38)!
Set I component	The controller integrator is loaded with the value at input CPI.SV as long as the input CPI.S is set to 1. When the torque direction reverses, the integrator is set by the switch- over logic stage (SOL.QCS) with the calculated <i>EMF</i> actual value and output at CPI.YI.
	The controller integral component is still limited to this EMF angle CPI.SVC=1.
	For analog control systems, this limit replaces the usual pulse inhibit or wobbling at low current actual values.
Pre-control angle	The <i>EMF</i> actual value, conditioned and normalized by FB SOL is available at setting input CPI.SV. The integrator is set during changeover with the control command from SOL.QCS at input CPI.S.

Fig. 5-22 Function chart CPI

EN =	EN = enable controller X = irrelevant				
	S = s	S = setting the integrator with the setting value			
		SVC = pre-control mode			
0	Х	Х	Controller inhibit Outputs Y,YE,YWP,YP,YI are set to 0		
1	0	0	Normal function Y = YP + YI		
1	0	1	With continuous tracking (correction) $Y = YP + YWP$, $YI = 0$		
1	1	0	Setting mode Y = YP + YI , YI = SV		
1	1	1	Setting mode with continuous tracking $Y = YP + YI + YWP$, $YI = SV$		

Table 5-10Behavior of the control inputs

Tracking	When selecting the mode "Pre-control and continuous tracking" CPI.SVC=1, the current controller converts this actual value into a pre- control angle CPI.YWP = "EMF angle" and this is added to controller output CPI.Y.		
	The pre-control and and ZSL.	gle CPI.YWP is	s limited to the effective limits CPI.ZSU
	YWP = f(SV) =	$\frac{2}{-} * \arcsin(sv)$	$\Rightarrow -1 \le SV \ge 1$
	=	+1	\Rightarrow if SV > + 1
	=	-1	⇒if SV < -1
	The actual value of precisely as possib The continuous tra- average value gen	f the EMF sens ble. The EMF h cking is only po eration of the c	sing FB EMF must be calibrated as has a deadtime. ossible with separate sensing due to the current sensing in the Sitor.
Dynamic inverter control	Input CPI.CLU allo control limit to be a	ws the current- dditionally influ	-dependent limiting of the inverter uenced.
	The function of the CAV and requires t	dynamic inver the connection	rter stability limit is programmed in FB (CAV.YAU → CPI.CLU)
	The lower value of control limit and is	CPI.ALU and (the dynamic ef	CPI.CLU acts as limiting for the inverter ffective control limit, output at CPI.ZSU.

/0	1	1
CPI.	Significance	Value\connection
AD	Hardware address	
WC	Current setpoint (absolute value)	CSP.YCW → CPI.WC
CPC	Pre-control angle in the discontinuous range	CPC.Y → CPI.CPC (Default: -0.333333 = 30[ASG])
XC	Current actual value (with sign)	$CAV.YC \to CPI.XC$
CLU	Limit of the current-dependent inverter stability limit [°], if this function is not required, CLU=ALU should be set to 150 [°].	CAV.YAU → CPI.CLU (Default: 150.0)
ALU	Inverter control limit of the firing angle [°] the minimum of CLU and ALU is used	(Initialization connection/ default: 150.0)
ALL	Rectifier control limit of the firing angle [°]	(Initialization connection/ default: 30.0)
SV	Setting value for torque reversal or continuous tracking (only active for $S = 1$)	SOL.YSV → CPI.SV {>-1+1<}
	(SV corresponds to the torque reversal of the motor EMF)	
ILU	Integrator inhibit, positive direction	CSP.QIU → CPI.ILU (Default: 0)
ILL	Integrator inhibit, negative direction	$\begin{array}{l} \text{CSP.QIL} \rightarrow \text{CPI.ILL} \\ \text{(Default: 0)} \end{array}$
S	Sets the integrator with the value SV	SOL.QCS → CPI.S
SVC	Mode: Pre-control of the CPI	(Default: 0)
KP	Proportional gain [1]	(Default: 0.01)
TN	Integral action time [ms]	(Default: 10000 ms)
PC	Inhibits integrator component (with PC=1 \Rightarrow integrator is deleted)	(Default: 0)
EN	Controller enable (with EN=0, all Yxx are immediately set to zero)	SOL.QCE → CPI.EN
Y	Firing angle [ASG]	$CPI.Y \rightarrow PC6.WAS$ (Default: 0.0)
YE	System deviation YE = WC – XC	(Default: 0.0)
YWP	Pre-control angle [ASG]	(Default: 0.0)
YP	P component	(Default: 0.0)
YI	I component	(Default: 0.0)
QU	Controller at its positive limit (M1)	(Default: 0)
QL	Controller at its negative limit (M2)	(Default: 0)
ТА	Sampling time: Current controller (configured)	(Default: 0 ms)
YW	Firing angle [°] (same as Y, only in another format)	(Default: 0.0)
ZSU	Inverter control limit, effective [°] (internally used limit f (ALU,CLU) is displayed)	(Default: 0.0)
ZSL	Rectifier control limit, effective [°] (ALL limit is displayed)	(Default: 0.0)

Table 5-11 I/O CPI

5.2.8 PC6, firing angle controller

	PC	;			
Hardware address — Mode:7kHz/long pulses — Inverter control limit [°] — Rectifier control limit [°] — Main pulse length [ms] — Second pulse length [ms] — Time value firing pulse output Time value PA6 start — Enable firing angle controller — 60° value [16 MHz] — Firing angle actual value [ASG] — Firing angle setpoint [ASG] — Test: Firing angle setpoint [°] _ Shift to inv. op.: Firing angle setpoint [°] _ >Rect./TA max. angular change [°] _ Tolerance pulse pos. from pos. error _ #Error DIL _ Control word _ Mode, double firing _ Handshake CAV	G B R R TS S D D B D R R R R R R R D & B B	AD LPD LDU LDL LFP CTH CTS EN X6R XAS WAS AQL AWS DAG DAW DIL DIZ ICC DZ ACI	TCP ACA ZPA ZLA ZXA WAF YEA DZM ZAH ACO QSF	TS R I R R BO W BO W	 Process. time all FB [ms] Process. time FB[°] Firing pulse No. {16} Firing pulse adjust. No. Diag.:Status "double firing state mach." Diag.:Pulse pos. error generation, status Angular setpoint System deviation, firing angle controller Double firing active Control HW ITDC Handshake EMF Fault

Fig. 5-23 PC6 represented in the CFC

Function

The PC6 function block (Pulse Controller 6-pulse) is used to implement a "Dead-beat" controller and the firing pulse generation for a 6-pulse linecommutated converter for a fully-controlled bridge B6C or two fullycontrolled bridges in a circulating-current free, anti-parallel circuit configuration B6(A)B6(C).

Various firing angle setpoints are used, depending on the operating mode, entered from the switch-over logic stage.

•	Closed-loop controlled operation	(SOL.ISE = 0)
•	Shift to inverter operation	(SOL.QPI = 1)
•	Open-loop controlled operation operation)	(SOL.ISE = 1 $\hat{=}$ test

The firing pulses for the thyristors of the SITOR set are generated on the ITDC according to the specifications of FB PC6.

The firing pulses are output as 7[kHz] pulse chains (standard) or as long pulses.

FB PC6 is always calculated as the last block in an interrupt task in synchronism with the firing pulses.

Fig. 5-24 Function diagram of PC6

It is possible to evaluate the accuracy of the gating unit by monitoring the pulse positions (this can be parameterized).

Firing angle setpoint	 The firing angle setpoint is switched-over from the switch-over logic stage (command word SOL.QCC → PC6.ICC). Corresponding to the selected mode, the inputs PC6.WAS (closed-loop controlled operation) PC6.AQL (test operation, open-loop controlled) PC6.AWS (shift to inverter operation) are used as manipulated variable to generate the firing pulses. In the "Closed-loop/open-loop controlled operation" modes, the firing angle setpoints are fed through a ramp-function generator. Separate change time constants are entered in the form of gradients for the two directions.
	change / sampling cycle ([°] / [TA]) in the direction of rectifier operation, PC6.DAW the max. angular change / sampling cycle towards inverter operation.
	The ramp-function generator is de-activated in the "Shift to inverter operation" mode.
Control limits for the	The absolute limiting of the control limits are always active using parameters
rectifier and inverter	PC6.LDU(inverter control limit) andPC6.LDL(rectifier control limit)!
	The limits, configured at current controller FB CPI.ALU, .ALL only act, if they have lower values than those at the absolute limits at FB PC6.

Pulse position monitoring	During operation the pulse position monitoring checks the difference between the firing angle setpoint and the actual value. If the absolute value of the deviation exceeds the limit [°], entered at input PC6.DIL, the counter is incremented at each calculation. If the counter status reaches the value at PC6.DIZ, the difference was too high and directly initiates a hardware pulse inhibit and a fault message.
Synchronizing	A line supply frequency change is mapped in the internal counter values on the ITDC and is immediately taken into account, after transfer, in the firing angle actual value PC6.XAS and in the 60° value of the line supply periods PC6.X6R (refer to the Section: Synchronization and pulse generation).
	The counter status "60° of the line supply periods" is used to shift the firing pulses.
Pulse waveform	The firing pulse waveform should be selected using input PC6.LPD and internally changes-over the ITDC. The "7 kHz pulse chain" waveform (PC6.LDP = 0) is selected as default, as the thyristor gating in the Sitor sets is only designed for pulse chains. If long pulses are output to a Sitor, this destroys the gating! Long pulses should only be set for special thyristor gating circuits.
	The length of the main pulse should be parameterized at input PC6.LMP (1.1 [ms]) and the second pulse at input PC6.LFP (1.1 [ms]). The pulse length may not exceed 45[°el], and must be adapted to the line frequency. We recommend that the length data are kept the same
Double firing	Operation: Double firing results in a special status of the closed-loop thyristor current control and is selected using the command $PC6.DZ = 1$. For fault-free operation, output PC6.DZM should be set to 1. When activated at SOL.DZM, the output voltage goes to zero and a free-wheeling branch is therefore enabled. The first firing pulse following the enable is continuously output with the associated firing pulse of the same phase. This means that the DC circuit is de-coupled from the line supply (refer to Section: Definitions).
Note	The double firing command is directly executed. It can be switched-in at any time in rectifier operation; this is not possible in inverter operation. The command can be withdrawn at any time.
	After the double firing has been de-activated, the firing pulses are generated again in synchronism with the line supply. The current controller and therefore the firing angle setpoint are tracked (corrected) by the switch-over logic stage during double firing operation.
Enable	If the controller or pulses have not been enabled (EN=0), the setpoint (WAF) is pre-assigned the constant firing angle of 90°.

/0		
PC6.	Significance	Value\connection
AD	Hardware address	
LDP	Selects the firing pulse waveform: LDP = 0: 7kHz pulse chains, LDP = 1: Long pulses	(Initialization connection/ default: 0)
	7kHz is required for all Sitor converters.	
LDU	Absolute inverter (INV) control limit [°] Condition: 90 ≤ PC6.LDU ≤ 180, otherwise, QSF\bit 9 =1 (180° is a theoretical value. The free-wheeling, pulse cancellation time and the overlapping due to the commutation must be taken into account.)	(Initialization connection/ default: 150)
LDL	Absolute rectifier (RECT.) control limit [°]	(Initialization connection/
	Condition: $0 \le PC6.LDL \le 90$, otherwise, QSF\bit $9 = 1$ (The limit should lie symmetrically around 90° to the inverter control limit.)	default: 30)
LMP	Main pulse length [ms] Conversion into degrees according the line frequency f:	(Default: 1.1ms) { < 45[°] el. }
	LMP [°] = LMP [ms] * f [Hz] * 10 $^{\circ}$ * 360[°] \Rightarrow LMP \ge 0.05ms If the configured value is lower, LMP is limited to 50 µs.	
LFP	Second pulse length [ms] We recommend that the value = LMP should be kept.	(Default: 1.1ms) { < 45[°] el. }
	(handled according to connection LMP)	
СТН	Firing pulse output, time value (the value changes in each cycle)	PA6.CTH → PC6.CTH
CTS	Time value at the start of FB-PA6 (the value changes in each cycle)	PA6.CTS → PC6.CTS
EN	Firing angle controller enable is realized, if Vsyn. and line supply = ok	PA6.RDY → PC6.EN
X6R	Numerical value $\hat{=}$ 60° of the line supply period [16 MHz] (50 Hz $\hat{=}$ 320000[1])	PA6.Y6R → PC6.X6R $\{2^{2^1}\}$
XAS	Firing angle actual value [ASG]	PA6.XAS → PC6.XAS {-10+1}
WAS	Firing angle setpoint [ASG]	CPI.Y → PC6.WAS
AQL	Test operation: Firing angle setpoint [°] Input limited with LDL ≤ AQL ≤ LDU	(Default: 150)
	The transferred firing angle is directly executed! Enter small changes in order to avoid overcurrents.	
AWS	Shift to INV operation: Firing angle setpoint [°] This angle becomes setpoint with signal SOL.QPI. The current controller is disabled.	(Initialization connection/ default: 150)
	Condition: $90 \le AWS \le 180$, otherwise, QSF\bit $9 = 1$	
DAG	Max. angular change/sampling cycle in the direction of rectifier operation	(Initialization connection/ default: 60)
	Condition: $0 \le PC6.DAG \le 180$, otherwise, QSF\bit $9 = 1$	
DAW	Max. angular change/sampling cycle in the direction of inverter operation	(Initialization connection/ default: 150)
	Condition: $0 \le PC6.DAW \le 180$, otherwise, QSF\bit $9 = 1$	

PC6.	Significance	Value\connection
DIL	Pulse position tolerance [°] Limit for the setpoint-actual value difference of the firing angle.	(Default: 1.0)
DIZ	Number of permissible continuous limit violations, DIL	(Default: 3)
ICC	Control word (assignment, refer below)	SOL.QCC → PC6.ICC
DZ	Operation: Double firing	(Default: 0)
	For DZ=1, a firing pulse pair of a phase is constantly output in the constellation 1-4, 2-5, 3-6 or 4-1, 5-2, 6-3.	
ACI	Handshake from the CAV block	CAV.ACO → PC6.ACI
ТСР	Processing time of all FBs [ms]	(Default: 0 ms)
ACA	Processing time in [°] (incl. 100 μs safety tolerance)	(Default: 0.0)
ZPA	Number of the firing pulse	PC6.ZPA → PA6.ZPA (Default: 0)
ZZA	Diag.: Firing pulse adjustment number (indicates the change of the number, only for changes > 60°.)	(Default: 0) {-30+4}
ZLA	Diag.: Status "Double firing state machine"	(Default: 0)
ZXA	Diag.: Status "Pulse position fault generation"	(Default: 0)
WAF	Firing angle setpoint α [°] (max. changes/TA are limited by DAG or DAW.)	(Default: 0.0)
YEA	System deviation, firing angle controller	(Default: 0.0)
DZM	Operation: Double firing active	PC6.DZM → SOL.DZM (Default: 0)
ZAH	Control word, hardware (assignment, refer below)	(Default: 16#0000)
ACO	Handshake for EMF block	PC6.ACO → EMF.ACI (Default: 0)
QSF	Fault word	PC6.QSF → SOL.QSP (Default: 16#0000)

Fig. 5-25 I/O PC6

hardware (ZAH)	ZAH	Signal/message
	Bit 1	Torque direction M1 enabled
	Bit 2	Torque direction M2 enabled
	Bit 3	Second pulses enabled
	Bit 4	Operation: Double firing enabled
	Bit 5	Pulse inhibit for undervoltage (refer to selection, SOL.UNM)
	Bit 6	Pulse chains activated
	Bit 7	Logical 0
	Bit 8	Int./ext. synchronizing voltage (0/1), (relay changeover of the inputs)
	Bit 9-16	Logical 0

Displays the control of the hardware register on the ITDC module

Table 5-12Control word, hardware (ZAH)

5.2.9 FCS, field current setpoint output

Fig. 5-26 FCS represented in CFC

Control word,

Function The function block FB FCS (Field Current Setpoint) is used to enter the field current setpoint for the excitation option and implements the sequence control to switch-in and switch-out the motor excitation and the closed-loop current control as well as a fault logic.

The switch-over logic stage to the system software is moved from FB SOL to FB FCS in order to take into account field built-up in the control.

The optional field device for the Sitor set is a single-phase "halfcontrolled" rectifier (B2HKFU) and requires a field current setpoint PC6.FC \ge 0. Negative values are set to zero and result in a configuring error.

If a configuring error is detected, the outputs FCS.QON $\$.QEO and the field current setpoint are set to zero.

Fig. 5-27 Function chart FCS

Switching-in and switching-out the excitation	The behavior of the control is switched-over with the selection "Option: Field device" (FCS.IE = 1). The delay time FCS.T runs when switching-in and switching-out.
	 FCS.EN generally enables the function block. As soon as the input is reset, the excitation is reduced and the outputs QON, QEO and the excitation current fault (FCS.QSF) are set to 0.

- FCS.ION "Switch-in command" (FCS.ION=1, .IOF=0, .IE=1) Outputs the field current setpoint FCS.FC at the D/A converter and therefore switches-in the field. At the same time, output QEO is set. After time FCS.T has expired, after the field has been established, the switch-over logic stage FB SOL is switched-in with FCS.QON. The evaluation of the fault signal "Field current < 3%" is also activated with a delay of this time. If the signal is still present, then there is a fault in the motor excitation and operation is inhibited.
- FCS.IOF "Switch-out" (IOF=1) With IOF=1, the switch-in command is withdrawn at FCS.QON and the field and output FCS.QEO are switched-out, delayed by the time.

Fig. 5-28 Diagram, FCS control

The setpoint available at input FCS.FC is written to the analog output on the ITDC. The output voltage Va of the D/A converter is obtained according to the following algorithm:

$$V_a = 10[V] * \frac{FC*ARC}{NF*RRC}$$
, D/A converter resolution (12 bit) = $\frac{RRC}{4096}$

FCS.IE = 0 can be used during the commissioning phase to switch-out the field current setpoint.

NOTE When configuring the FCS block, analog output 2 is switched-over from ITDC-X5 to the Sitor interface. Channel 2 is no longer available for additional configuring purposes!

I/O		
FCS.	Significance	Value\connection
AD	Hardware address	
RRC	Rated field current - rectifier [A]	(Initialization connection/
	Condition: RRC \ge ARC \neq 0, otherwise, QSF\bit 12 = 1	default: 0.0)
ARC	Rated field excitation current of the DC motor [A]	(Initialization connection/
	Condition: RRC \ge ARC \neq 0, otherwise, QSF\bit 12 = 1	default: 0.0)
NF	Normalization factor to interpret the setpoint	(Initialization connection/
	NF= 1 (FC=1 $[1] \stackrel{\circ}{=}$ rated excitation current =ARC)	default: 1.0)
	NF=ARC (FC=ARC [A] $\hat{=}$ rated excitation current =ARC)	
ION	On command, field current a positive edges switches through the field setpoint, if IE and EN = 1 and IOF = 0	(Default: 0)
IOF	Switches-out the field setpoint output after time T and resets QON	(Default: 0)
FC	Field current setpoint is output at analog output 2 Observe the normalization!	(Default: 0)
	Condition: $FC \ge 0$, otherwise, QSF\bit 12 = 1	
EN	Enables inputs ION, IOF	(Default: 0)
	With EN=1 and IE=1, the current setpoint input is enabled. With EN=0, the field is reduced, as for ION=1	
IE	Option: Field present	(Default: 0)
	If IE = 0, setpoint = 0 [V] is permanently output. A switch-on command ION=1 \Rightarrow QON=1, instantaneously	
т	Delay time when switching-in and when switching-out, if the option IE=1 is acknowledged. QON is output, delayed by time T. This means that the switch- over logic stage is only switched-in when the field has been established. QEO is only reset after time T when switching-out.	(Initialization connection/ default: 1500 ms)
	Condition: $0 \le T \le 100000$ ms, otherwise, QSF\bit 12 = 1.	
QON	Outputs the on command ION=1, for IE=1, QON is set, delayed by time T QON is reset 1 cycle after the switch-out command (ION=0 or IOF=1).	FCS.QON → SOL.ION (Default: 0)
QEO	Setpoint output checkback signal (only for IE=1) The output is only reset after time T has expired.	(Default: 0)
TA	Diagnostics: Configured sampling time	(Default: 0 ms)
ZVA	Diagnostics: Status "Field state machine"	(Default: 0)
QSF	Fault	FCS.QSF → SOL.QSS (Default: 16#0000)

Fig. 5-29 I/O FCS

5.3 Commissioning

WARNING	Only start the commissioning phase if effective measures have been made to ensure that the plant or drive is safely and reliably stopped, both electrically and mechanically, and cannot be started.
	Ensure that all of the safety and EMERGENCY OFF monitoring functions are connected and are fully effective so that the drive can be safely shut down at any time.
Measuring equipment required	For commissioning, measuring equipment and a PC with system software S7 + CFC + D7Sys and the configured software are required.
	 A two-channel storage oscilloscope with probes 1:10 or 1:100 are used for the measurements.
	• A clip-on ammeter to check the field current and to plot the armature current if the current actual value in the Sitor converter is not available at the test socket.
	 An oscilloscope can be used instead of a rotating field detector.
5.3.1 Preparatory	y work
	• The pulses are only enabled with a voltage > 15 V at pin ITDC- X5:10. The voltage at pin ITDC-X5: 7 can be used for this purpose. An open-circuit input at pin 10 is interpreted as "External pulse inhibit" and causes the pulses to be shutdown immediately on the hardware side.
	 Before powering-up for the first time, the electronics and power connections of the Sitor drive converter must be checked to ensure that the rotating fields are all clockwise.
	 The electronics and power connections <u>must</u> have the same phase relationships to one another.
Note	During the current controller optimization phase, the excitation must be switched-out and the rotor must be firmly locked so that it cannot rotate!
Comment	A circuit to enter step sequences has to be programmed for test purposes during the commissioning phase. This reduces the stressing on the stationary motor commutator during the current optimization routine.
	The D/A converter on the ITDC should be configured to display internal values on an oscilloscope.

To optimize the current controller, the setpoint of the higher-level speed controller should be de-coupled using a switch, or the connection should be deleted.

5.3.2 Entering the characteristic system quantities

The characteristic system quantities have been entered when configuring the system and have to be checked when commissioning the system.

After the initialization parameter changes have been entered, the processors should be reset with a restart at the subrack or using the CFC online function (Target system\operating status - restart).

System parameters

Connec- tion	Significance	Value	Value change	Туре
EMF.RRV	Rated Sitor voltage of the sensing [V]. Condition: $RRV \ge ARV$, $> QSF\bit 14 = 1$	0.0		Init
EMF.ARV	Rated system / motor voltage [V] Condition: RRV \ge ARV \ne 0, $>$ QSF\bit 14 = 1	0.0		Init
EMF.NF	Normalization of the voltage actual value at YUA	1.0		Init
EMF.AAV	Line supply voltage [V]. Condition: AAV $\leq \cdot$ ARV $\frac{\sqrt{2} * \pi}{3}$, >QSF\bit 14 = 1	(0.0)		
EMF.XFO	Offset frequency of the V/f converter [kHz] Condition: -6 kHz \leq XFO \leq 6 kHz, $>$ QSF\bit 14 = 1	0.0		Init
EMF.RA	Normalized armature resistance	0.0		
EMF.TA	Armature time constant [ms]	0 ms		
EMF.T	Smoothing time for YEV value (the smoothing is disabled with T=0)	20 ms		
CAV.RRC	Rated SITOR set DC current [A]Condition: $RRC \ge ARC$,> QSF\bit 12 = 1	0.0		Init
CAV.ARC	Rated system / motor current [A]Condition: $RRC \ge ARC \ne 0$,> QSF\bit 12 = 1	0.0		Init
CAV.NF	Normalization of the current actual value at YC Condition: NF > 0 ,	1.0		Init
CAV.XFO	Offset adjustment [kHz] {≥-6.0+6.0≤}	0.0		Init
PA6.XDA	Offset angle { -180°+180° }	0.0		
PA6.NAZ	No. of failed line supply periods Condition: $0 \le NAZ \le 3050$, $> QSF bit 9 = 1$	8		Init
PA6.FNT	Line supply frequency [Hz] for start of synchronization Condition: $6 \le FNT \le 600$, > QSF\bit 9 = 1	50		Init
CPI.KP	Proportional gain [1]	0.01		
CPI.TN	Integral action time [ms]	10000 ms		
FCS.RRC	Rated current of the field current rectifier [A] Condition: $RRC \ge ARC \ne 0$, $> QSF$ \bit 12 = 1	0.0		Init

Connec- tion	Significance	Value	Value change	Туре
FCS.ARC	Rated DC motor field current [A] Condition: RRC \ge ARC \neq 0, $>$ QSF\bit 12 = 1	0.0		Init
FCS.NF	Normalization factor to interpret the setpoint	1.0		Init
FCS.T	Delay when switching-in and switching-out	1 <mark>5</mark> 00 ms		Init
	Condition: $0 \le T \le 100000$ ms, $>$ QSF\bit 12 = 1.			
SOL.WCL	Switch-in threshold for the torque direction (absolute value)	0.01		
SOL.TH0	Thyristor hold-off time [ms] Condition: 0.5 ms \leq TH0 \leq 131 ms, > YW2\bit 10 =1	10 ms		Init
SOL.TCP	Thyristor pulse suppression time [ms] Condition: 0.0 ms \leq TH0 \leq 20000 ms , $>$ YW2\bit10 =1	20 ms		Init
SOL.TCD	Monitoring time, torque change M1 ⇔ M2	1000 ms		
SOL.TM0	Monitoring time, torque direction M0	2000ms		
PC6.LMP	Main pulse length [ms] $\{ < 45[^{\circ}] \text{ el.} \}$	1.1ms		
PC6.LFP	Second pulse length [ms] { < 45[°] el. }	1.1ms		
PC6.AQL	Test operation: Firing angle setpoint [°]	150		
PC6.AWS	Shift to INV. op.: Firing angle setpoint [°] Condition: $90 \le AWS \le 180$, $> QSF$ \bit $9 = 1$	150		
PC6.DAG	Max. angular change/TA in the direction of rectifier op. Condition: $0 \le DAG \le 180$, $> QSF$ \bit $9 = 1$	60		
PC6.DAW	Max. angular change/TA in the direction of inverter op. Condition: $0 \le DAW \le 180$, $> QSF$ \bit $9 = 1$	150		
CPC.VCI	Current setpoint at the discontinuous limit, {0 < VCI < discontinuous limit}	0.1		
CPC.ALP	Pre-control angle in the discontinuous range [°], {≥25°…30°≤} starts when current starts to flow	25.0		
CSP.GLI	Gradient for setpoint smoothing	0.6		
CSP.IL	Gradient for integrator inhibit	0.6		

Limit values

Connec- tion	Significance	Value	Value change	Туре
CAV.CX1	Max. current for torque direction M1 (abs. value)	0.1		
CAV.CX2	Max. current for torque direction M2 (abs. value)	0.1		
CPI.CLU	Limit of the current-dependent inverter stability limit [°]	150.0		
CPI.ALU	Inverter control limit of the firing angle [°]	150.0		Init
CPI.ALL	Rectifier control limit of the firing angle [°]	30.0		Init
PA6.NAZ	No. of failed line supply periods Condition: $0 \le NAZ \le 3050$, $> QSF$ \bit $9 = 1$	8		Init
PA6.NEP	No. of line supply periods Condition: $0 \le NEP \le 5000$, $> QSF$ \bit $9 = 1$	5		Init

Connec- tion	Significance	Value	Value change	Туре
PC6.LDU	Absolute inverter (INV) control limit [°] Condition: $90 \le LDU \le 180$, $> QSF$ \bit $9 = 1$	150		Init
PC6.LDL	Absolute rectifier (RECT) control limit [°] Condition: $0 \le LDL \le 90$, > QSF\bit 9 = 1	30		Init
PC6.DIL	Tolerance of the pulse position [°]	1.0		
PC6.DIZ	No. of permissible limit violations DIL	3		
CSP.WCU	Positive current limit (absolute value)	1.0		
CSP.WCL	Negative current limit (absolute value)	1.0		

Selection, parameters

Connec- tion	Significance	Value	Value change.	Туре
PA6.SYX	Mode: Synchronizing voltage source	0		Init
PA6.NCM	Mode: Line supply handling { 04 , >4= 0 }	0		
PA6.FAM	For NCM=1: Refer to 4 For NCM=2: Average value generation { ≥1<8 } For NCM=3: Decrease phase difference { ≥1≤1000 } For NCM=4: Decrease phase step { ≥1≤1000 }	0		
PA6.INV	Mode for rotating field detection	0		Init
PA6.FNT	Line supply frequency [Hz] for the start of synchronization	50		Init
	Condition: $6 \le FNT \le 600$, > QSF\bit 9 = 1			
SOL.UNM	Mode: Handling an undervoltage condition (Sitor)	2		
SOL.IEF	Mode: Use calculated EMF value (FB EMF present)	1		
SOL.NZM	Zero current signal from the SITOR set Y/N=0/1	0		
SOL.OF2	Off command, torque direction M2	0		
SOL.HMH	Enables the bits for the hardware signaling word YHW	16#FFFF		
SOL.HM1	Enables the bits for fault word YF1	16#FFFF		
SOL.HM2	Enables the bits for fault word YF2	16#FFFF		
SOL.HP1	Enables the bits from YF1 for immediate pulse inhibit	16#0020		
SOL.HP2	Enables the bits from YF2 for immediate pulse inhibit	16#0040		
CPI.SVC	Mode: Pre-control of the CPI	0		
PC6.LDP	Selects the firing pulse waveform: LDP = 0: 7kHz pulse chain, LDP = 1: long pulses.	0		Init

Options				
Connec- tion	Significance	Value	Value change	Туре
CAV.XF2	Current-dependent inverter stability limit [1] {≥0.00.2≤}	0.0		Init
	Condition: $0.0 \le XF2 \le 0.2$, $> QSF \ 12 = 1$			
CAV.IAV	Correction for the inverter stability limit [1] {≥0.71.3≤}	1.0		Init
	Condition: $0.7 \le IAV \le 1.3$, $> QSF \ 12 = 1$			
CAV.AL1	Positive correction of the current actual value sensing	0.0		Init
	Condition: $-0.1 \le AL1 \le 0.1$, $> QSF \ 12 = 1$			
CAV.AL2	Negative correction of the current actual value sensing	0.0		Init
	Condition: $-0.1 \le AL2 \le 0.1$, $> QSF \ 12 = 1$			
CPI.PC	Inhibit integrator component	0		
PC6.DZ	Mode: Double firing	0		
FCS.IE	Option: Field present	0		

5.3.3 Current sensing calibration

The following commissioning steps may only be carried-out when the system is stationary and the closed-loop control is disabled:

- **Procedure** Adjust (calibrate) the V/f converter frequency for the current actual value sensing:
 - The closed-loop current control remains switched-out.
 → SOL.ION=0 or SOL.IOF=1
 - The offset frequency [kHz] should be read at CAV.YFO = calibration value for CAV.XFO.
 - The calibration value should be entered at CAV.XFO with the inverse polarity.
 - The value becomes effective (Initialization mode) after a restart. The output CAV.YC must have a value which is approximately zero.
 - **Note** The circuit for sensing and frequency conversion has an offset and drifts with temperature and time. This means that the offset must be checked again when the system is in a warm operational condition and after a longer operating time.
- Correcting gain errors (optional) In the software there is an option at FB CAV to correct a gain error of the current actual value sensing. This adapts the normalization of the actual value. The value for the correction in the software should be determined using a separate check of the sensing in the drive converter and is only required in special cases. For a SITOR set (e.g. 6QG32x), a check always incurs some time. The inputs CAV.AL1, .AL2 should be kept at the default value.

5.3.4 Voltage sensing calibration

The following commissioning steps may only be carried-out when the system is stationary and the closed-loop control is disabled.

Procedure Calibrating the V/f converter frequency for the actual value sensing of the output voltage.

The closed-loop current control remains switched-out \rightarrow SOL.ION=0 or SOL.IOF=1

- The offset frequency [kHz] should be read at EMF.YFO = calibration value for EMF.XFO.
- The calibration value should be entered with the inverse polarity at EMF.XFO = - EMF.YFO.
- The value becomes effective (Initialization mode) after a restart. The output EMF.YUA must have a value which is approximately zero.

5.3.5 Determining the offset angle

The offset angle should be determined if there is a clockwise rotating field at the electronics and power supply for the Sitor converter.

The offset angle to be specified corrects the phase shift between the natural firing instant of semiconductor device 1 and the zero crossover of the filtered synchronizing voltage on the ITDC.

Procedure

- The power to the drive converter should be disconnected. Open the armature circuit (!).
- Connect the phase voltage L1 (!) from the power connection AK1 of the SITOR set to channel 1 of the oscilloscope via the 1:100 probe Summed pulses at channel 2 (ITDC -X5:12) Connect the oscilloscope ground to the SIMADYN D ground (only use the ground from ITDC -X5: 14!)
- Enter firing angle PC6.AQL=150 [°], (this is normally set with the default value)
- Before the switch-on command, changeover to controlled test operation with SOL.ISE = 1
- Power-up the drive converter power supplies
- Enter a switch-on command from the higher-level control (SOL.ION=1) and either enter the current setpoint (SOL.WC1/2) > SOL.WCL > 0.0 or set with the on command for torque direction M1 (SOL.ON1).
- With a firing angle of 150°, the firing pulse from semiconductor device 1 must coincide with the zero crossover of voltage V_{L1-MP} . If this is not the case, the pulse position must be corrected using

Fig. 5-30 Pulse position for a correctly set offset angle

- The correct firing pulse position must be checked after each correction and if required should be further changed. The position must be precise!
- Switch-off command (SOL.ION = 0) or (SOL.ON1 = 0)
- Switch-off the power to the Sitor set
- Remove the measuring cables for phase voltage L1 (!) and pulses.

5.3.6 Determining the armature time constant TA

The armature time constant TA is determined, in the open-loop controlled test mode using a "Current step" outside the discontinuous range.

The current actual value of the armature circuit should be plotted.

The SITOR set provides the current as voltage signal ($I_{rated} = -10V$) at test socket I_{act} (-A1: bottom right, M right-4th socket from the bottom) or at terminal–X15 :1 (:3 is ground).

The current can be connected to an oscilloscope channel using a clip-on ammeter or the internal value via the configured analog output.

- The armature circuit should be closed again.
 - The motor rotor should be mechanically locked, as the remanence field still generates a torque in the motor.
 - Open the field circuit and inhibit the excitation! (FCS.IE=0).

Procedure

Determining the discontinuous limit

The discontinuous current limit should be determined. The test mode should be set-up and the firing angle α should be slowly reduced at PC6.AQL in the direction of rectifier operation. Depending on the system constellation, the current should exit the discontinuous range for a firing angle in the vicinity of 90° (PA6.YIT ≥1).

Document this firing angle as α_1 and the associated current actual value (CAV.YC).

- To determine the upper current value, the firing angle α should be entered with a short step. The angle should be very carefully (!) decreased, as even small changes can result in significant current changes. The firing angle for the step amplitude of the current should be documented as α_2 .
- Change the firing angle as a step function from angle α_1 to α_2 and trigger the oscilloscope when the current actual value changes.

Fig. 5-31 Example: Circuit for the step combination

• The armature time constant should be determined from the current actual value characteristic (refer to the Fig. "Determining the armature time constant").

Determining the armature time constant

• Enter the determined value at input EMF.TA.

If the plant/system configuration has been entirely completed: \rightarrow establish the original configured condition.

5.3.7 Optimizing the current controller

The controller parameters are determined with the field excitation switched-out (!) and the rotor mechanically locked.

The current controller FB CPI should be optimized with steps, reference input variable (command variable) = current setpoint. The controller is a PI controller. The gain CPI.KP and the integral action time CPI.TN should be separately set. The I component should first be switched-out (CPI.PC = 1), so that the integral action time CPI.TN is disabled.

 The current at the discontinuous limit, previously determined, should be entered at CPC.VCI. The current step to the discontinuous limit should in this case not result in an increased current.

The basic proportional gain setting, CPI.KP=0.01 for non-discontinuous operation is a non-critical value.

The current setpoints SOL.WC1 + SOL.WC2 are transferred as sums to the current controller (SOL.YWC \rightarrow CPI.WC).

- CPI.TN=10000.0 integral action time [ms]
- The armature circuit should be closed again.
- To switch-in the closed-loop current control, the current setpoint SOL.YWC should be 0.0.
 Enable signal to the switch-over logic stage SOL.ION= 0→1

The step function circuit used previously can also be used here.

Controller optimization in the non-discontinuous range

- The 1st step WC₁ of the current setpoint (e.g. connection SOL.WC1) must be slightly above the discontinuous current limit (CPI.XIT=1). The value which has already been determined, can be used.
- In the steady-state (stabilized) status, the 2nd step should be switched to setpoint WC₂. This should result in a significantly higher current with respect to the setting for WC₁. The length of the step must be adapted to the system situation. The step should be used to trigger the oscilloscope and trace the current actual value.
- The proportional gain CPI.KP should be empirically determined for the "optimum" transition. The user must decide which setting is optimum for the system. The plots shown below are for several typical settings.
- After the gain has been determined, the integral component is reactivated (CPI.PC=0). The armature time constant value is set at input CPI.TN and the setting should be checked using the current characteristic, with the same step function as was previously used.

Comment

Transient

actual value, no overshoot

Transient response, current actual value, with overshoot

Fig. 5-34 Transient response, current actual value, high overshoot (schematic)

Fig. 5-35 Transient response, current actual value, low overshoot (schematic)

5.3.8 Field supply

	The SITOR field device is a half-controlled, single-phase rectifier (B2HKFU), where the power module and the control are one mechanical and electrical unit. The field device is permanently installed in the SITOR set, e.g. 6QG32x with the "Field device" option.
Current actual value sensing	The current actual value is sensed using a shunt on the DC current side. The current actual value is available at the SITOR electronics module -A1 at test socket "I_ E_{act} " (-10V = I_ E_{rated}).
	The current actual value is adjusted to the rated current in the plant. Potentiometer R402 can be used to adapt the internal amplifier stage (electronics module -A2).
Current setpoint	There are three ways of entering the current setpoint:
input	 The setpoint for the field excitation current is transferred to the field electronics A2 via the SITOR interface ITDC-X7 via the electronics module -A1 with ribbon cable. Switch
	• Via potentiometer R212 on board -A1. In this case, switch -S217 must be changed-over to setting 2/3 (this switch is soldered!).

	• External via terminal X102:3. In this case, switch -A1-S217 should be opened from setting 1/3 (factory setting), as otherwise the voltages would be connected.
NOTE	When entering the current setpoint from SIMADYN D, switch -S217 (SITOR set) must be in the 1/3 setting (factory setting).
Setting the field current	In order to operate the field controller from SIMADYN D using FB FCS, input FCS.IE should be set to "1".
	 The parameters for the field current controller on the electronics board are set by the manufacturer and are therefore permanent. The current, specified on the motor rating plate for the field excitation
	should be set using the setpoint at FCS.FC. A clip-on ammeter is the safest way to check that the field current is actually flowing.
	• The time to establish the field should be specified with an additional safety margin at FCS.T. The closed-loop armature current control is only switched-in after the field has been established and this time has expired.

5.4 Special features/issues

5.4.1 Operation from 60 [Hz] line supplies

Several parameters must be re-determined for operation on line supplies with a frequency of 60 [Hz].

Calculation rule The equivalent sampling time should be specified in the "HW Config" software according to the following equation.

Equivalent sampling time = $\frac{1}{f * pulse No.}$

This data is required to convert the time-dependent quantities in interrupt task I1 (3.3[ms] at 50 [Hz], 2.7 [ms] at 60[Hz]).

The gating unit uses input PA6.FNT as reference value for the automatic frequency adaptation. A value of 60 should be entered at the input for a 60 [Hz] line supply.

5.4.2 Operation with unstable line supplies

The normal public utility is generally stable regarding frequency and voltage, even under load conditions. However, this stability can be restricted when operating the drive converter from line supplies with a lower fault rating, especially on local networks (island networks).

In order to be able to operate the gating unit on unstable line supplies or with "polluted" synchronizing voltages, several functions are available in the software at FB PA6 for the line supply monitoring and at FB EMF.

Generally, with unstable line supplies a low-frequency oscillation is superimposed on the line frequency. This can cause the gating unit to oscillate and, under extreme situations, can also result in the closed-loop thyristor current control being switched-out with "pulse position error". Furthermore, the synchronizing voltage can have sporadic phase steps, especially when large loads are either powered-up or powered-down on the factory network. Using special software processing, these effects can either be reduced or even completely eliminated

Various methods can be selected at PA6.NCM for handling the line supply.

PA6.NCM = 0: There is no line supply handling. The zero crossovers of the synchronizing voltage, sensed using the hardware circuit, are used, without any software correction to determine of the firing pulses. This setting should only be used for "clean" synchronizing voltages.

PA6.NCM = 1: As for NCM = 4 (for reasons of compatibility)

	PA6.NCM = 2: The line supply period is converted into an internal line supply value. From the last (max. 8) line supply values, the number of which is defined at PA6.FAM, the average value is generated and transferred to the synchronizing function. The average value is continuously generated $\{1 \le PA6.FAM \le 8\}$. This means that changes in the line supply value appear smooth for the internal monitoring. This allows low frequency fluctuations to be suppressed using an n x duration of the line supply periods (e.g. a 12.5 Hz fluctuation does not appear in the frequency-dependent quantities when using an average value generated over 4 values).
	PA6.NCM = 3: Period and therefore line supply value fluctuations are corrected using the PLL method (P controller). The phase difference is only taken into account with 1/FAM. {1 \leq PA6.FAM \leq 1000}.
	PA6.NCM = 4: Period and therefore line supply value fluctuations are corrected using the PLL method (PI controller). The phase difference is weighted only with 1/FAM and the last average with (FAM-1)/FAM. NCM=4 with FAM=2040 is most suitable for single, one-off faults of the synchronizing voltage.
	• The average value generation of the line supply period must be adapted to the line frequency fluctuation by making a suitable entry at PA6.FAM.
	 Trace several periods of the non-averaged line supply frequency (connection PA6.XFN, actual frequency)
	Determine the factor n: $n = \frac{Period \text{ duration of the fluctuation}}{Line supply period duration}$
NOTE	If the line supply values are smoothed, this reduces the probability that the system oscillates, but it can also mean that the gating unit becomes slower (dynamic response) when synchronizing for real (e.g. load- related) frequency dips and then shuts-down with a pulse position error.
Line supply voltage fluctuations	Separate sensing is required for more significant fluctuations of the line supply voltage at the power feed. The normalized signal is connected to connection EMF.AAV and corrects the gating unit firing angle.

5.4.3 Communications utility, time synchronization

All of the time functions (FB RTC...) cannot be used when using the closed-loop thyristor current control in conjunction with the ITDC expansion module.

In order that the time-critical closed-loop current control is not interrupted by "external" interrupts (clock interrupts), then these interrupts are suppressed by programming FBs on the processor. This means that the time utility is no longer available!
5.5 Interfaces to the power electronics

The PM5/6 processor module and the ITDC expansion module with the standard software are designed for three-phase bridges B6C or an antiparallel circuit configuration comprising two three-phase bridge circuits B6(A)B6(C) with thyristors.

The connection between ITDC and the SITOR thyristor sets 6QG2x, 6QG3x is standardized. All of the signals are transferred via a 50-core cable with sub-D connector. There is no potential isolation between the SD and drive converter.

• There is a SITOR interface -X7 on the ITDC expansion module.

An SE20.2 interface module has been developed to connect the ITDC to a 6QC5x SITOR thyristor cabinet unit. The reason is that the cabinet system does not have a SITOR interface. SITOR cabinet units 6QC5 are connected to the ITDC expansion module via the SE20.2 interface module.

 If the power sections are mounted some distance away or are connected in parallel, then adapter modules must be used.

5.5.1 SITOR set

The permanently configured "SITOR interface" -X2 of 6QG2x/6QG3x SITOR sets are provided on the electronics module -A1. The monitoring signals and actual values which are processed by SIMADYN D are conditioned there. The "SITOR interface" includes the following signals:

- < synchronizing voltage [V]
- < zero crossover signals V_{L12} and V_{L13} for rotating field detection
- > control pulses for torque directions 1 and 2
- < current actual value [kHz]
- < current actual value [V]
- < output voltage [kHz]
- < zero current signal
- < temperature monitoring
- < undervoltage monitoring
- < fuse monitoring

More detailed information about the assignment of the interfaces specified above is provided in the "Hardware" Manual in the Section " ITDC expansion module".

A clockwise rotating field with the same phase sequence must be connected at the power connections and the power supply for the electronics module -A1. The zero crossovers of voltages V_{L12} and V_{L13} are retrieved from the power section supply. The synchronizing voltage is taken from the electronics section at the secondary of the supply transformer.

If the synchronizing voltage from the SITOR set cannot be used, for example because the power supply of the SITOR set electronics does not have the same phase sequence as the power connections, then an external synchronizing voltage can be entered via connector ITDC-X5: 5/6 ($15[V_{RMS}]$, range $10\text{-}20[V_{RMS}]$, internal resistance $20[k\Omega]$)

Fig. 5-36 Connection diagram SIMADYN D – SITOR set

The direct connection between the SITOR set 6QG2x/6QG3x and the SITOR interface ITDC-X7 is established using pre-assembled cables SC17.2 (2 m) and SC31.2 (10 m).

Connections to the drive converter can also be established using the adapter module "C" and cables SC17.2 (2 m) and SC31.2 (10 m) (\rightarrow Catalog DA91, SITOR thyristor sets).

This adapter should be used to connect two drive converters in parallel. For sets connected in parallel, it should be decided which of the two current actual values should be transferred to the ITDC expansion module.

Signals can be coupled-in or coupled-out at the adapter modules.

No changes have to be made at the SITOR sets and the expansion module.

5.5.2 SITOR cabinet

SITOR cabinet units 6QC5 are connected via the SE20.2 interface module to the SITOR interface of the ITDC expansion module.

The drive converter signals are connected to the SE20.2 and from there, transferred floating to the ITDC.

The SE20.2 interface module can be inserted in the SIMADYN D subrack where it occupies three slots. The module has a rear connector to input the voltage. However, it does not have a coupling to the backplane bus. The depth of the modules differ.

Synchronizing
voltages SA60Synchronization to the line supply is realized using the SA60.1
synchronizing module. The transformer has a delta configuration on the
line side. This means that this phase rotation must be taken into
consideration at PA6.XDA.

The SA60.1 synchronizing module comprises an SA61 transformer module and the SA20.1 line supply sensing module. These are connected through a ribbon cable.

The line supply voltage is connected, with a clockwise rotating field, to the screw terminals of the transformer module SA61-X2. The transformed voltages are processed on the SA20.1 electronics module and are transformed to the screw terminals of the SE20.2 -X6 interface module via screw terminals -X2.

The zero crossover signals of phase-to-phase voltages V_{L12} , V_{L13} and the synchronizing voltage are transferred to the ITDC -X7 expansion module via the SITOR interface SE20.2-X3.

When shipped, the SA60.1 synchronizing module is pre-set to a rated input voltage of 400 V (Dip switches S1:3, S1:7 and S2:3 are closed).

For more detailed information on this module, please refer to the description of the SA60.1 synchronizing module.

Connection ITDC - SE20.2 -	Connector X3 of the SE20.2 is directly connected to the SITOR interface X7 of the ITDC expansion module.
6QG5xx	The power section is connected via connectors X1 and X2.
Firing pulses	The firing pulses are output with electrical isolation at connector SE20.2- X1 and terminate in the SITOR cabinet at the pulse distribution (e.g. 6QM2200). For bridges which are connected in parallel, the distribution is realized within the SITOR cabinet.
	The shields are grounded at the SE20.2 and the pulse distribution and can be separated at the pulse distribution.
	The connector assignments can be taken from the User Manual "SITOR interface SE20.2".
Actual values and monitoring functions	The actual values and monitoring signals are collected at the transfer module of the SITOR cabinet from where they are transferred to connector SE20.2-X2 .
	• Shielding (-X2: z2 and z26) The shields are grounded at the SE20.2 and in the SITOR cabinet and can be separated in the cabinet.
	 Voltage actual value (-X2: b4 (+), z4 (-)) The output voltage is provided from a transducer (e.g. LEM electronic PT), and supplies the actual value signal as analog DC voltage or current signal. The actual value should be normalized at the load resistor module -A1 (on the lefthand component side of the SE20.2). The voltage actual value can also be fed from connector -X9 of the interface module where it is connected to a load resistor. If the voltage actual value is not used, then the input on the load resistor module -A1 should be short-circuited (e.g. inserting a jumper from R1+R2)
	 Temperature monitoring (-X2: b8) The SITOR cabinet does not have an actual temperature monitoring function. However, temperature monitoring can be practically derived from the "Fan failure" signal of the fan flow monitor. Temperature monitoring is provided for air-water cooling systems. When a fault condition develops, the input of the SE20.2 is open or logical "0". For disturbance-free operation, the input is kept at logical "1". The supply for the NO contact of the airflow monitoring can be taken from SE20.2 (external 24[V]). If the signal is not used, it can be permanently connected to 2P24 or can be suppressed in the closed-loop thyristor current control (SOL.HWM bit3=0).

- Current actual values (-X2: z12, b12, b14 and z14) The current can be formed in the cabinet or at the interface module.
- Generating the actual value in the SITOR cabinet: The current actual value is generated in the SITOR cabinet using a shunt (e.g. LEM electronic CT) or using a CT with load resistor and rectification and is transferred as current or voltage signal to SE20.2-X2:b12 and z12. The signals are converted with the load resistor at the load resistor module –A2 (righthand component side of the SE20.2), and are normalized by appropriately inserting the load resistors.
- 2. Generating the actual value on the SE20.2:

Three or two CTs in a V circuit configuration can be connected to the SE20.2-X2 on the three-phase side of the SITOR cabinet. A load resistor is connected across the current actual value in the plant. If the rectification is used, the 0 Ω resistors R3 and R9 should be removed from the SE20.2 board and 0 Ω resistors should be inserted for resistors R2, R10 and R15, R8. In this case, the maximum current is 1 A.

 When using two CTs in a V circuit configuration, the first CT is connected to connections b12 and z12; the second CT to connections b14 and z14.
 The current actual value can also be fed from connector -X9 of the

interface module or it can also be output through a load resistor there.

If the current actual value is not used, then the input should be short-circuited, e.g. by jumpering R1/R2 on the load resistor module -A2.

 When using three CTs, a neutral point is formed in the SITOR cabinet. The remaining three CT connections are connected to connections -X2: b12, z12 and b14.

• Fuse monitoring (-X2: b16)

The external 2P24 voltage is connected to -X2:b16 via the NC contact of the fuse monitoring.

If there is no fuse monitoring (e.g. for parallel circuit configurations), this monitoring function can be derived from the current monitoring of each bridge.

 The sum signal is obtained by connecting all of the NC contacts in parallel. Using a parallel circuit configuration of the NC contacts, a fault signal is output if any of the bridges, connected in parallel, fail. In this case, the current limit should be reduced, depending on the failed bridges, using additional digital inputs of the SIMADYN D system!

• Absolute value of the line supply voltage (-X2: d22 and d24d) pulse suppression (-X2: b30)

 Evaluating the absolute value of the line supply voltage via SE20.2 The synchronizing module SA60.1 generates an absolute value of the line supply voltage |V_{supply}|. This voltage signal at -X2:d22 (+), d24 (-) and the pulse supply voltage at -X2:b30 are individually monitored against a limit and are internally OR'ed to form an "Undervoltage" signal. The absolute value of the line supply voltage can also be read-in via bus connector -X9 and via -X5 / -X6.

 Evaluating the absolute value of the line supply voltage via SA60.1 The SA60.1 synchronizing module generates a digital undervoltage signal (line sensing module SA20.1 X2 pins 9, 10 or 11). This signal can be connected (using a suitable circuit) in series with the relay associated with the "Pulse voltage supply" monitoring (e.g. 6QM1038x), and evaluated using a separate digital input of the SIMADYN D system (SOL.HWH bit4=0 \ SOL.UNM=0).

NOTE The pulse undervoltage signal should be evaluated according to 1. or 2., because, if the power supply voltage fails, the thyristors could fail due to a high trigger power loss.

External I=0 signal (-X2: b28 and z28)

Standard applications use the internal I=0 signal of the SE20.2. If an external I=0 signal (digital signal, max. 60V) is to be supplied, e.g. from a blocking voltage sensing, then the wire jumper IA-IB (at the bottom lower component side of the SE20.2) should be changed over to IA-IC (solder connection). In this case, the internal I=0 signal is not effective. Adaptation to the input signal is realized via the voltage divider R44, R45 and R46. The internal threshold is 3.6V.

The I=0 signal evaluation is not generally required. In this case, the input at the change-over logic stage SOL.NZM should be set to 1 so that the internal zero current signal is used. However, in this case it should be taken into consideration that the drives lose some of their dynamic response at torque reversal!

Field supply Standard applications with SITOR cabinets provide a special type of field supply. In this case, the "Field current setpoint output" block FB FCS should not be configured, and the fault evaluation associated with the field current monitoring at input SOL.HM1 \ bit 14 should be set to 0.

Connecting-up the monitoring signals The monitoring signals are, with the exception of the field current monitoring, defined so that a logical "1" signal represents a fault-free status.

A logical "0" signal or an open-circuit input i.e. wire breakage, results in a fault detection (masking of the switch-over logic stage at inputs SOL.HWM/HM1/HM2).

Many signals are output via relays in the SITOR cabinet. If possible, the wiring should be realized as follows to provide the most flexible evaluation possible, regarding other evaluation units:

Fault/error-free status

2024	Monitoring signal to the transfer module
2F24	

NOTE

The connector assignment for -X2 should be taken from the User Manual "SITOR interface SE20.2". The connecting cable for actual value/monitoring functions can, according to the Section "Connecting cables" be configured by customers themselves.

Fig. 5-37 Connecting diagram SIMADYN D – SITOR cabinet

Connecting cable, firing pulses (X1)

Pair No.	Contact assignment Z_2 is cable, 4) is shield connection	
	Core A	Core E
1	d4	b4
2	d6	b6
3	d8	b8
4	d10	b10
5	d12	b12
6	d14	b14
7	d20	b20
8	d22	b22
9	d24	b24
10	d26	b26
11	d28	b28
12	d30	b30
13	Not as	signed

(contact \angle_2 with contact \angle_2)

- 1) 2 x shell-type enclosure A with catches: Order No.: A09060480501 GDS A-FL Manufacturer: Harting
- 2) 2 x insulating bodies for crimp connection: Order No.:A09060483201 (48 pin) Manufacturer: Harting
- 3) Control cable 13 x 2 x 0.18: Order No.:6FC9343-0AC Manufacturer: Siemens
- 4) 2 x cable LIY 1 x 0.5 / 1.6 ws: (shield connection)
- 5) Spring-mounted contacts to crimp: Order No.:09060006421 Crimp Manufacturer: Harting

Connecting cable, actual values (X2)

Pair No.	Contact assignment (Z ₂ is cable, 4) is shield connection)		
	Core A	Core B	
1	b4	z4	
2	b8	z8	
3	b12	z12	
	(b14)	(z14)	
4	b16	z16	
5	b18	z18	
6	b20	z20	
7	b22	z22	
8	b24	z24	
9	b28	z28	
10	b30	z30	

(contact Z_2 with contact Z_2)

Connection b14/z14 only for current actual value sensing in a V circuit configuration

- 2 x shell-type enclosure A with catches: Order No.:A09060480501 GDS A-FL Manufacturer: Harting
- 2) 2 x insulating bodies for crimp connection Order No.:A09060483201 (48 pin) Manufacturer: Harting
- Control cable 10 x 2 x 0.18 W -: Order No.:6FC9343-0AB Manufacturer: Siemens
- 4) 2 x cable LIY 1 x 0.5 / 1.6 ws: shield connection
- 5) Spring-mounted contacts to crimp: Order No.:09060006421 Crimp Manufacturer: Harting

5.6 Definitions

Closed-loop

current control

All of the current-dependent quantities are referred to the rated system current CAV.ARC (e.g. rated motor current) and normalization factor CAV.NF, specified by the user.

All of the voltage-dependent quantities are referred to the rated system voltage EMF.ARV (e.g. rated motor voltage) and the normalization factor EMF.NF.

If the instantaneous drive converter output voltage Vd is the same as the value configured at input ARV (Vd=ARV), then in the normalized representation type (NF=1), the output value YUA=1.

Double firing For DZ=1, a firing pulse pair of a phase is constantly output in the constellation 1-4, 2-5, 3-6 or 4-1, 5-2, 6-3.

Fig. 5-38 Assignment of the firing pulses to the semiconductor devices

Normal operation with the actual firing pulses is resumed as soon as the double firing mode has been de-activated.

The switch-over logic stage corrects the current controller and therefore the firing angle setpoint during double firing operation.

5.6.1 Formats

Format data 16#FFFF = hexadecimal value

Firing angle

The "Firing angle" format is an internal format for calculations. A value can be converted into degrees using the following formula:

$$ASG = 1 - \frac{\alpha}{90}$$

	The value range of the A $-1 \Leftrightarrow 0 \Leftrightarrow +3$	ASG format 1 =[ASG]
	corresponds to	
	$180^{\circ} \Leftrightarrow 90^{\circ} \Leftrightarrow 0^{\circ}$	° = [°] <i>f</i> iring angle
16MHz	The line supply frequence 16MHz counter (21 bit re A counter status of	cy is emulated as a line supply value using a esolution). The format is specified with [16MHz]. 320000 $\stackrel{\circ}{=}$ 50 [Hz], 266667 $\stackrel{\circ}{=}$ 60 [Hz]

5.6.2 Designations

Various symbols are used in this document.

Dimension data	[A , V , Hz , kHz , Ω , m Ω , °]			
Value range	{ value	{ value data , limit data }		
Comments	(text)			
Connection	→	, this is also used as reference.		
Result, sequence of	⇒			
Change				

5.7 Abbreviations

A-Z	Significance 1	Significance 2
B6C	Fully-controlled 3-phase bridge	
(B6)A (B6)C	Anti-parallel circuit Fully-controlled B6 bridge	
CFC	Graphic configuring	
D7-SYS	Program for CFC	
FB	Function block	
ITDC	Interface Technology DC	DC current
HW	Hardware	
LE-Bus	Local expansion bus	
LE-I1	Interrupt 1 for ITDC from PM	
M0	No torque direction selected	
M1	Torque direction 1	
M2	Torque direction 2	
SW	Software	
SITOR	Sitor family of drive converters	
ТА	Armature time constant	Sampling time = computation cycle
U SYN	Synchronizing voltage	
α	Firing angle	
1Q	Operation in only one current direction	
4Q	Operation in only two current directions	

Table 5-13 Abbreviations

5.8 Appendix

5.8.1 Standard configuration of parameters

Connec- tion	Significance	Value	Value change	Туре
PA6.SYX	Mode: Source, synchronizing voltage	0		Init
PA6.XDA	Offset angle { -180°+180° }	0.0		
PA6.NAZ	No. of failed line supply periods Condition: $0 \le NAZ \le 3050$, $> QSF$ \bit $9 = 1$	8		Init
PA6.NEP	No. of line supply periods Condition: $0 \le NEP \le 5000$, $> QSF$ \bit $9 = 1$	5		Init
PA6.NCM	Mode : Line supply handling { 04 , >4= 0 }	0		
PA6.FAM	For NCM=1: Refer to 4For NCM=2: Average value generation{ ≥1<8 }For NCM=3: Decrease phase difference { ≥1≤1000 }For NCM=4: Decrease phase step { ≥1≤1000 }	0		
PA6.INV	Mode for rotating field detection	0		Init
PA6.FNT	Line frequency [Hz] for start of synchronization Condition: $6 \le FNT \le 600$, > QSF\bit 9 = 1	50		Init

Connec- tion	Significance	Value	Value change	Туре
EMF.RRV	Rated Sitor voltage of the sensing [V]. Condition: $RRV \ge ARV$, $> QSF$ \bit 14 = 1	0.0		Init
EMF.ARV	Rated system / motor voltage [V] Condition: RRV \ge ARV \ne 0, $>$ QSF\bit 14 = 1	0.0		Init
EMF.NF	Normalization of the voltage actual value at YUA	1.0		Init
EMF.AAV	Line supply voltage [V]. Condition: AAV $\ge \cdot$ ARV $\frac{\sqrt{2} * \pi}{3}$, $>$ QSF\bit 14 = 1	(0.0)		
EMF.XFO	Offset frequency of the V/f converter [kHz] Condition: -6 kHz \leq XFO \leq 6 kHz, $>$ QSF\bit 14 = 1	0.0		Init
EMF.RA	Normalized armature resistance	0.0		
EMF.TA	Armature time constant [ms]	0 ms		
EMF.T	Smoothing time for YEV value (the smoothing is switched-out with T=0)	20 ms		

Connec- tion	Significance	Value	Value change	Туре
SOL.TH0	Thyristor hold-off time [ms] Condition: 0.5 ms \leq TH0 \leq 131 ms, > YW2\bit10 =1	10 ms		Init
SOL.TCP	Thyristor pulse suppression time [ms] Condition: 0.0 ms \leq TH0 \leq 20000 ms , $>$ YW2\bit10 =1	20 ms		Init
SOL.TCD	Monitoring time for torque change M1 👄 M2	1000 ms		
SOL.IPL	Pulse inhibit = 1 effective immediately !	0		
SOL.UNM	Mode: Handling the undervoltage (Sitor)	2		
SOL.ION	On command, closed-loop thyristor current control	0		
SOL.IOF	Off command, closed-loop thyristor current control	0		
SOL.ON1	Enable, only torque direction M1	0		
SOL.OF1	Off command, torque direction M1	0		
SOL.ON2	Enable, only torque direction M2	0		
SOL.OF2	Off command, torque direction M2	0		
SOL.IEF	Mode: Use calculated EMF value (FB EMF available)	1		
SOL.NZM	Zero current signal from the SITOR set Y/N=0/1	0		
SOL.WC1	Current setpoint 1 (or connection)	0.0		
SOL.WC2	Current setpoint 2 (or connection)	0.0		
SOL.WCL	Switch-on threshold for torque direction (abs. value)	0.01		
SOL.TM0	Monitoring time for torque direction M0	2000ms		
SOL.IF1	Fault, external 1	0		
SOL.IF2	Fault, external 2	0		
SOL.HMH	Enables bits for the hardware signaling word YHW	16#FFFF		
SOL.HM1	Enables bits for the fault word YF1	16#FFFF		
SOL.HM2	Enables bits for the fault word YF2	16#FFFF		
SOL.HP1	Enables bits from YF1 for immediate pulse inhibit	16#0000		
SOL.HP2	Enables bits from YF2 for immediate pulse inhibit	16#0000		
SOL.MNE	Group inhibit, fault word YF1 and YHW	16#067E		

Connec- tion	Significance	Value	Value change	Туре
CSP.WCU	Positive current limit (absolute value)	1.0		
CSP.WCL	Negative current limit (absolute value)	1.0		
CSP.GLI	Gradient for setpoint smoothing	0.6		
CSP.IL	Gradient for integrator inhibit	0.6		

Connec- tion	Significance	Value	Value change	Туре
CPC.VCI	Current setpoint at the discontinuous limit {0 < VCI < discontinuous limit}	0.1		
CPC.ALP	Pre-control angle in the discontinuous range [°], {≥25°30°≤}	25.0		

Connec- tion	Significance	Value	Value change	Туре
CAV.RRC	Rated DC current of the SITOR set [A] Condition: RRC \ge ARC, $>$ QSF\bit 12 = 1	0.0		Init
CAV.ARC	Rated system / motor current [A] Condition: RRC \ge ARC \neq 0, $>$ QSF\bit 12 = 1	0.0		Init
CAV.NF	Normalization of the current actual value at YC Condition: NF > 0 ,	1.0		Init
CAV.XFO	Offset calibration [kHz] {≥-6.0+6.0≤}	0.0		Init
CAV.XF2	Current-dependent inverter stability limit [1] $\{\geq 0.00.2 \leq \}$ Condition: $0.0 \leq XF2 \leq 0.2$,> QSF\bit 12 = 1	0.0		Init
CAV.IAV	Correction for the inverter stability limit [1] $\{\geq 0.71.3\leq\}$ Condition: $0.7 \leq IAV \leq 1.3$, $> QSF$ \bit 12 = 1	1.0		Init
CAV.AL1	Positive correction, current actual value sensing Condition: $-0.1 \le AL1 \le 0.1$,	0.0		Init
CAV.AL2	Negative correction, current actual value sensing Condition: $-0.1 \le AL2 \le 0.1$,	0.0		Init
CAV.CX1	Max. current for torque direction M1 (abs. value)	0.1		
CAV.CX2	Max. current for torque direction M2 (abs. value)	0.1		

Connec- tion	Significance	Value	Value change	Туре	
CPI.CLU	Limit of the current-dependent inverter stability limit [°] 150.0				
CPI.ALU	Inverter control limit, firing angle [°] 150.0				
CPI.ALL	Rectifier control limit, firing angle [°] 30.0				
CPI.SVC	Mode: Pre-control of the CPI 0				
CPI.KP	Proportional gain [1]	0.01			
CPI.TN	Integral action time [ms] 10000 ms				
CPI.PC	Inhibit integrator component	0			

Connec- tion	Significance	Value	Value change	Туре
PC6.LDP	Selects the firing pulse waveform: LDP = 0: 7kHz pulse chain, LDP = 1: Long pulses.	0		Init
PC6.LDU	Absolute inverter (INV) control limit [°] Condition: $90 \le LDU \le 180$, $> QSF$ \bit $9 = 1$	150		Init
PC6.LDL	Absolute rectifier (RECT) control limit [°] Condition: $0 \le LDL \le 90$, > QSF\bit 9 = 1	30		Init
PC6.LMP	Main pulse length [ms] { < 45[°] el. }	1.1ms		
PC6.LFP	Second pulse length [ms] { < 45[°] el. }	1.1ms		
PC6.AQL	Test operation: Firing angle setpoint [°]	150		
PC6.AWS	Shift to INV operation: Firing angle setpoint [°] Condition: $90 \le AWS \le 180$, $> QSF$ \bit $9 = 1$	150		Init
PC6.DAG	Max. angular change/TA in the direction of rectifier op. Condition: $0 \le DAG \le 180$, $> QSF$ \bit $9 = 1$	60		Init
PC6.DAW	Max. angular change/TA in the direction of inverter op. Condition: $0 \le DAW \le 180$, $> QSF$ \bit $9 = 1$	150		Init
PC6.DIL	Tolerance of the pulse position [°]	1.0		
PC6.DIZ	No. of permissible limit violations DIL	3		
PC6.DZ	Operation: Double firing	0		

Connec- tion	Significance	Value	Value change	Туре
FCS.RRC	Rated current of the field current rectifier [A] Condition: RRC \ge ARC \neq 0, $>$ QSF\bit 12 = 1	0.0		Init
FCS.ARC	Rated field current of the DC motor excitation [A] Condition: RRC \ge ARC \neq 0, $>$ QSF\bit 12 = 1	0.0		Init
FCS.NF	Normalization factor to interpret the setpoint	1.0		Init
FCS.ION	On command, field current	0		
FCS.IOF	Switch-out field setpoint output	0		
FCS.FC	Field current setpoint Condition: $FC \ge 0$ > QSF\bit 12 = 1	0		
FCS.EN	Enables inputs ION,IOF	0		
FCS.IE	Option: Field present	0		
FCS.T	Delay time when switching-in and when switching-out Condition: $0 \le T \le 100000$ ms, $> QSF$ \bit 12 = 1.	1 <mark>5</mark> 00 ms		Init

5.8.2 Standard connections

Connections,

internal

Connec- tion	Туре		Significance	Source
PA6.ZPA	ON	NV	Firing pulse number	PC6.ZPA
PC6.CTH	ON	NV	Firing pulse output, time value	PA6.CTH
PC6.CTS	ON	NV	Time value, start of FB PA6	PA6.CTS
PC6.EN	ON	NV	Enable firing angle controller	PA6.RDY
PC6.X6R	ON	NV	Numerical $\hat{=}$ 60° of the line supply periods [16 MHz]	PA6.Y6R
PC6.XAS	ON	NV	Firing angle actual value [ASG]	PA6.XAS
PC6.WAS	ON	SP	Firing angle setpoint [ASG]	CPI.Y
PC6.ICC	ON	NV	Control word	SOL.QCC
PC6.ACI	ON	NV	Handshake from the CAV block	CAV.ACO
EMF.XC	ON	SP	Current actual value (with sign)	CAV.YC
EMF.ACI	ON	NV	Handshake from the PC6 block	PC6.ACO
SOL.ION	ON	SP	On command of the closed-loop thyristor current control (,FCS present)	FCS.QON
SOL.DZM	ON	NV	Operating signal, double firing	PC6.DZM
SOL.XC	ON	NV	Current actual value (with sign)	CAV.YC
SOL.XEV	ON	NV	EMF value calculated	EMF.YEV
SOL.QSC	ON	NV	Fault word from CAV	CAV.QSF
SOL.QSM	ON	NV	Fault word from EMF	EMF.QSF
SOL.QSA	ON	NV	Fault word from PA6	PA6.QSF
SOL.QSP	ON	NV	Fault word from PC6	PC6.QSF
SOL.QSS	ON	NV	Fault word from FCS (, if programmed)	FCS.QSF
CAV.IM1	ON	NV	Torque direction M1 operational \Rightarrow "+" = CX1	SOL.Q01
CAV.IM2	ON	NV	Torque direction M2 operational \Rightarrow "-" = CX2	SOL.Q02
CAV.ACI	ON	NV	Handshake from the EMF block	EMF.ACO
CPC.WC	ON	NV	Current setpoint (absolute value)	CSP.YWC
CSP.WC	ON	SP	Current setpoint from the switch-over logic stage	SOL.YWC
CPI.WC	ON	SP	Current setpoint (absolute value)	CSP.YWC
CPI.XC	ON	NV	Current actual value (with sign)	CAV.YC
CPI.SV	ON	NV	Setting value, integrator from the switch-over logic stage	SOL.YSV
CPI.S	ON	NV	Setting the integrator with value SV	SOL.QCS
CPI.EN	ON	NV	Controller enable	SOL.QCE
CPI.ILU	ON	NV	Inhibits the integrator, positive direction	CSP.QIU
CPI. ILL	ON	NV	Inhibits the integrator, negative direction	CSP.QIL

NV=Connection required SP=Standard connection according to the standard configuring

Connections, external

Connec- tion	Significance Source					
SOL.IPL	OL.IPL Pulse inhibit = 1, effective immediately!					
SOL.ION	ON On command, closed-loop thyristor current control					
SOL.IOF	Off command, closed-loop thyristor current control					
SOL.WC1	Current setpoint 1					
SOL.WC2	Current setpoint 2					
SOL.IF1	External fault 1					
SOL.IF2	2 External fault 2					
SOL.MNE	Group inhibit, fault words YF1 and YHW					
SOL.QUI	Acknowledgement, faults YF1 and YF2					
FCS.ION	On command, field current					
FCS.IOF	Switch-out field setpoint output					
FCS.FC	Field current setpoint					
FCS.EN	Enable inputs ION,IOF					

5.8.3 Configuring example for normalization

The closed-loop thyristor current control can be used with normalized (standard) and absolute values.

For the example for the settings of the system parameters, the following are used as basis: A 6QG3230-2AB SITOR set (3-ph./400[V], AC 30[A] + field) and a DC motor with the rated data:

and the phase-to-phase line supply voltage: UL=400 V.

5.8.3.1 Representation with normalized values

Current actual	Parameter	Significance
value sensing	CAV.RRC = 30[A]	Rated DC current [A] of the SITOR set current [A] for V _{lact} =5 V/CT SITOR
	CAV.ARC =10 [A]	Rated system/motor current [A] current [A] for CAV.YC=1
	CAV.NF =1	Current normalization factor
	CAV.CX1=+1.5	Absolute value, overcurrent, torque direction 1 [%] permissible overcurrent 15 A
	CAV.CX2=+1.5	Absolute value, overcurrent, torque direction 2 [%] permissible overcurrent -15 A
	CAV.YC	Current actual values, normalized $-10A \Leftrightarrow 0A \Leftrightarrow +10A = CAV.YC = -10+1$

Voltage actual	Parameter	Significance
value sensing	EMF.RRV=1000 [V]	SITOR set voltage normalization [V] voltage [V] at Vact=10 V/PT
	EMF.ARV=400 [V]	Rated system/motor voltage [V] voltage [V] for YUA=1
	EMF.NF=1	Voltage normalization factor
	EMF.AAV=400 [V]	Phase-to-phase line supply voltage [V]
	EMF.RA=0,0125	Normalized armature resistance
		$EMF.RA = RA[\Omega] * \frac{NF(EMF)}{ARV(EMF)} * \frac{ARC(CAV)}{NF(CAV)}$
		$EMF.RA = 500m\Omega * \frac{1}{400V} * \frac{10A}{1} = \frac{12.5 \cdot 10^{-3}}{1}$
	EMF.YEM, YUA ,YUR, YUL	Voltage actual values, normalized $-400V \Leftrightarrow 0 \Leftrightarrow +400V = -10+1$
	EMK.YEV	Pre-control
		$YEV = \frac{YEM}{\sqrt{2} \cdot AAV}$

Field current	
setpoint output	

	Parameter	Significance
	FCS.RRC=5 [A]	Rated current, field unit [A]
ſ	FCS.ARC=1,5 [A]	Rated field current [A]
	FCS.NF=1	Normalization factor
	FCS.FC=1	Field current setpoint

5.8.3.2 Representation with absolute values

Curre	nt actual
value	sensing

Parameter	Significance
CAV.RRC = 30[A]	Rated DC current [A] of the SITOR set current [A] at V _{lact} =5 V/CT SITOR
CAV.ARC =10 [A]	Rated system/motor current [A] current [A] for CAV.YC=1
CAV.NF =10	Current normalization factor
CAV.CX1=+15	Absolute value for overcurrent, torque direction 1 permissible overcurrent +15 [A]
CAV.CX2=+15	Absolute value for overcurrent, torque direction 2 permissible overcurrent –15 [A]
CAV.YC	Current actual values, absolute -10A \Leftrightarrow 0A \Leftrightarrow +10A \doteq CAV.YC = -100+10

NOTE The blocks use normalized values for internal calculations. This means, in this particular case, the current setpoint and the current actual value for the current controller CPI should be divided by the normalization factor CAV.NF using a division block (CPI.WC/CAV.NF and CPI.XC/CAV.NF).

Refer to the example, the following applies:

- For DIV block 1:
 - Connect CAV.YC with X1
 Enter the configured value of CAV.NF=10 at X2
 Connect output Y of DIV block 1 with CPI.XC
- For DIV block 2:
 - Connect SOL.YWC with X1
 Enter the configured value of CAV.NF=10 at X2
 Connect output Y of DIV block 2 with CPI.WC

The division blocks should be configured in the sequence that they are run directly in front of the current controller block CPI!

Voltag	ge actual
value	sensing

Parameter	Significance
EMF.RRV=1000 [V]	SITOR set voltage normalization [V] voltage [V] at Vact=10 V/PT
EMF.ARV=400 [V]	Rated system/motor voltage [V] voltage [V] for YUA=1
EMF.NF=400	Voltage normalization factor
EMF.AAV=400 [V]	Phase-to-phase line voltage [V]
EMF.RA=0,0125	Normalized armature resistance $EMF.RA = RA[\Omega] * \frac{NF(EMF)}{ARV(EMF)} * \frac{ARC(CAV)}{NF(CAV)}$ $EMF.RA = 500[m\Omega] * \frac{400}{400[V]} * \frac{10[A]}{10} = \frac{500 \cdot 10^{-3}}{10}$
EMF.YEM, YUA ,YUR, YUL	Voltage actual values, normalized $-400V \Leftrightarrow 0 \Leftrightarrow +400V = -4000+400$
EMK.YEV	Pre-control $YEV = \frac{YEM}{\sqrt{2} \cdot AAV} = \frac{-4000+400}{\sqrt{2} \cdot AAV} \stackrel{\circ}{=} \frac{-10+1}{\sqrt{2} \cdot AAV}$ YEV is, as shown in the normalized representation, normalized to 1 and referred to the line supply amplitude. For normalized and absolute values, YEV has the same value range!

Field current setpoint output

Parameter	Significance
FCS.RRC=5 [A]	Rated field unit current [A]
FCS.ARC=1.5 [A]	Rated field current [A]
FCS.NF=1.5	Normalization factor
FCS.FC=1.5 [A]	Field current setpoint

NOTE The system must be restarted (Initialization quantities) when changing between representation with normalized or absolute values.

Index

\$

\$ signals	

7

7-segment display	2-46
Acknowledge error	2-46

Α

Application example PROFIBUS DP	
Configuring slaves	
Assigning a name	2-3
Assigning names Philosophy for assigning names	4-2
	······································

В

Basic clock cycle	
Basic CPU clock cycle	
Basic information, communications	
Behavior under fault conditions	
BICO technology	
Changing interconnections	
general	
Interconnection possibilities	

С

CFC chart (Continuous Function Chart)	
CFC editor	
Creating interconnections	
Margins	2-11
Parameterizing dialogs	
COM PROFIBUS	
Communicaions	
SIMATIC Operator Panels	
Communication blocks	
Address connections AT, AR, US	
Central coupling blocks	
Firmware status, ECL, ECO connection	
Initialization input CTS	
MOD connection	
Status display, output YTS	
Transmitter and receiver	
Communication utilities	

Overview	3-8
Communications	
WinCC via MPI	
WinCC via SINEC H1	
Communications buffer coupling	
COMSS5	
Bus parameters	
Communication associations	
Loading the database	
Menu structure	
Configuring SIMADYN D stations	2-4
Configuring technological connectors	
Consistency check	2-7
Coupling modules	
Number in the subracks	
Coupling to EP3 modules	
Couplings	
Data interface	
Mode of operation	
Net data structures	
Overview	
Couplings on the subrack	
CPU synchronization	2-27
Configuring the CPU basic clock cycle	2-28
Configuring the interrupt task	
Cycle errors	
Eliminating	2-34

D

Data consistency	2-23
Data transfer mode	
Handshake	3-11
Image	3-14
Multiple	3-13
Overview	3-11
Refresh	3-12
Select	3-13
DATX attributes	4-17
Deadtimes	2-21
Display control	
Acquisition block	
Computation- and data transfer times	
Configuring	3-230
Data entries at the central block	3-230
Hardware and software	3-229
Message output block	3-233
Download in the RUN status	2-15
drive converter coupling	3-149
Drive coupling SIMOLINK	
Configuring	3-166
Function blocks	3-171
Settings in HWConfig	3-167
Drive coupling SIMOLINK	
Slave settings	3-172

DUST 2	
Configuring	
DUST1	
Configuring	
Configuring example	
Hardware	
DUST2	
Hardware	
DUST3	
Central coupling block	
Configuring	
Hardware	
Transmit- and receive block	
DUST7	

Ε

rror differentiation

F

Fast \$ signal	2-20
Features	
Computation times of the operating system	
Cyclic tasks	2-34
Interrupt tasks	
Memory requirement of the operating system	
Function block	
Assignment of the input/output blocks to modules	
Assignment to interrupt tasks	2-9
Comments	2-12
Function block types	
Derivatives	
Standard data type	
Function blocks	
Assigning to cyclic tasks	2-9

Η

hardware address	
Hardware timer	
HWConfig	
Parameterizing dialogs	
	-

Industrial Ethernet	
Initialization	
Interconnecting	2-12
Interrupt-controlled processing	

L

Libraries	2-4
Limited number of interconnections	2-21

Loading the user program	
Offline loading	
Online loading	
Local CPU coupling	3-22

Μ

Message system	3-42 3-239
Communications error message	3-246
Entry logic	
Error or alarm message	
Message entry blocks	
Message format	
Message formats	
Message type description	
Messages	
Output format	
Overflow message	
System error	
System error message	
MPI coupling	
Configuring	

Ν

Network	
Description	
Rigid network	
Terminology	

0

OP2	
Operating system components	
Operator Panels (SIMATIC)	

Ρ

Parameter access technique for D7-SYS.	
Parameter changes, status-dependent	
Parameter processing	
Cascading	
Configuring	
Configuring example	
Error message	
Function blocks	
Parameter change report	
Parameter settings	
PKW blocks	
response ID	
Task	
Telegram structure	
Peer-to-peer	
Configuring	3-149, 3-150
Hardware requirements	3-149

Pointer-based communications blocks	
Applications	
Associated function blocks	
Configuring information and instructions	
Examples	
Features	
Pointer interface	3-281
Principal mode of operation	3-279
Pointer-based communications blocks	
Introduction	3-278
Process data	3-270
Blocks CRV, CTV	3-274
Channel marshalling blocks	
Channels	
Configuring example	
Diagnostics	
Distribution block	3-276
Function blocks	3-270
Virtual connections	3-270
Process image	2-23
Implementation	2-23 2-24
Address connection	
Address connection	
COM PROFIBUS	
Communications module SS52	3-73
	0.47.0.70
Configuring	3-47, 3-70
Configuring Configuring CFC	3-47, 3-70
Configuring Configuring CFC Diagnostic data	3-47, 3-70 3-67 3-54
Configuring Configuring CFC Diagnostic data Download COM database	3-47, 3-70 3-67 3-54 3-81
Configuring Configuring CFC Diagnostic data Download COM database Error class	3-47, 3-70 3-67 3-54 3-81 3-62
Configuring Configuring CFC Diagnostic data Download COM database Error class Hardware and software	3-47, 3-70 3-67 3-54 3-81 3-62 3-67
Configuring Configuring CFC Diagnostic data Download COM database Error class Hardware and software LED.	3-47, 3-70 3-67 3-54 3-81 3-62 3-67 3-61
Configuring Configuring CFC Diagnostic data Download COM database Error class Hardware and software LED. Memory SS52.	3-47, 3-70 3-67 3-54 3-81 3-62 3-67 3-67 3-61 3-80
Configuring Configuring CFC Diagnostic data Download COM database Error class Hardware and software LED Memory SS52 Parameterization	3-47, 3-70 3-67 3-54 3-81 3-62 3-67 3-67 3-61 3-80 3-77
Configuring Configuring CFC Diagnostic data Download COM database Error class Hardware and software LED. Memory SS52 Parameterization Parameterizing	3-47, 3-70 3-67 3-54 3-81 3-62 3-67 3-61 3-80 3-77 3-73
Configuring Configuring CFC Diagnostic data Download COM database Error class Hardware and software LED. Memory SS52 Parameterization Parameterizing SIEMENS DP slaves	3-47, 3-70 3-67 3-54 3-81 3-62 3-67 3-61 3-80 3-77 3-73 3-56
Configuring Configuring CFC Diagnostic data Download COM database Error class Hardware and software LED Memory SS52 Parameterization Parameterizing SIEMENS DP slaves SYNC/FREEZE	3-47, 3-70 3-67 3-54 3-81 3-62 3-67 3-61 3-80 3-77 3-73 3-73 3-56 3-50
Configuring Configuring CFC Diagnostic data Download COM database Error class Hardware and software LED Memory SS52 Parameterization Parameterizing SIEMENS DP slaves SYNC/FREEZE Transmit- and receive blocks	3-47, 3-70 3-67 3-54 3-54 3-81 3-62 3-67 3-61 3-80 3-77 3-73 3-73 3-56 3-50 3-69
Configuring Configuring CFC Diagnostic data Download COM database Error class Hardware and software LED Memory SS52 Parameterization Parameterizing SIEMENS DP slaves SYNC/FREEZE Transmit- and receive blocks Typical configuration	3-47, 3-70 3-67 3-54 3-81 3-62 3-67 3-67 3-61 3-80 3-77 3-73 3-73 3-73 3-56 3-50 3-69 3-64
Configuring Configuring CFC Diagnostic data Download COM database Error class Hardware and software LED Memory SS52 Parameterization Parameterizing SIEMENS DP slaves SYNC/FREEZE Transmit- and receive blocks Typical configuration PROFIBUS FDL	3-47, 3-70 3-67 3-54 3-81 3-62 3-67 3-67 3-67 3-61 3-80 3-77 3-73 3-73 3-56 3-50 3-69 3-64 3-83
Configuring Configuring CFC Diagnostic data Download COM database Error class Hardware and software LED Memory SS52 Parameterization Parameterizing SIEMENS DP slaves SYNC/FREEZE Transmit- and receive blocks Typical configuration PROFIBUS FDL Central coupling block	3-47, 3-70 3-67 3-54 3-81 3-62 3-67 3-61 3-61 3-77 3-73 3-73 3-56 3-50 3-69 3-64 3-83 3-84
Configuring Configuring CFC Diagnostic data Download COM database Error class Hardware and software LED Memory SS52 Parameterization Parameterizing SIEMENS DP slaves SYNC/FREEZE Transmit- and receive blocks Typical configuration PROFIBUS FDL Central coupling block Communications	3-47, 3-70 3-67 3-54 3-81 3-62 3-67 3-61 3-61 3-73 3-73 3-73 3-73 3-56 3-50 3-69 3-64 3-83 3-84 3-84 3-85
Configuring Configuring CFC Diagnostic data Download COM database Error class Hardware and software LED Memory SS52 Parameterization Parameterizing SIEMENS DP slaves SYNC/FREEZE Transmit- and receive blocks Typical configuration PROFIBUS FDL Central coupling block Communications Data entries at address connection.	3-47, 3-70 3-67 3-54 3-81 3-62 3-67 3-61 3-61 3-80 3-73 3-73 3-73 3-56 3-50 3-69 3-64 3-83 3-84 3-85 3-85
Configuring Configuring CFC. Diagnostic data. Download COM database Error class Hardware and software LED. Memory SS52. Parameterization Parameterization Parameterizing SIEMENS DP slaves SYNC/FREEZE Transmit- and receive blocks Typical configuration PROFIBUS FDL Central coupling block Communications. Data entries at address connection. Data quantities	3-47, 3-70 3-67 3-54 3-54 3-61 3-62 3-67 3-67 3-67 3-67 3-73 3-73 3-73 3-56 3-50 3-69 3-64 3-83 3-84 3-85 3-85 3-85 3-85 3-87
Configuring Configuring CFC Diagnostic data Download COM database Error class Hardware and software LED Memory SS52 Parameterization Parameterizing SIEMENS DP slaves SYNC/FREEZE Transmit- and receive blocks Typical configuration PROFIBUS FDL Central coupling block Communications Data entries at address connection Data quantities Hardware	3-47, 3-70 3-67 3-54 3-54 3-62 3-61 3-61 3-61 3-77 3-73 3-56 3-50 3-50 3-64 3-84 3-84 3-85 3-85 3-85 3-87 3-83
Configuring Configuring CFC Diagnostic data Download COM database Error class Hardware and software LED. Memory SS52. Parameterization Parameterizing SIEMENS DP slaves SYNC/FREEZE Transmit- and receive blocks Typical configuration PROFIBUS FDL Central coupling block Communications. Data entries at address connection. Data quantities Hardware sampling times	3-47, 3-70 3-67 3-54 3-54 3-61 3-61 3-61 3-77 3-73 3-73 3-56 3-50 3-50 3-69 3-64 3-83 3-84 3-83 3-84 3-85 3-85 3-87 3-83 3-87 3-83 3-87
Configuring Configuring CFC Diagnostic data Download COM database Error class Hardware and software LED Memory SS52 Parameterization Parameterizing SIEMENS DP slaves. SYNC/FREEZE Transmit- and receive blocks Typical configuration PROFIBUS FDL Central coupling block. Communications Data entries at address connection Data quantities Hardware sampling times PROFIBUS FMS	3-47, 3-70 3-67 3-54 3-54 3-62 3-61 3-61 3-77 3-73 3-73 3-56 3-50 3-50 3-69 3-80 3-84 3-85 3-85 3-85 3-85 3-87 3-87 3-83 3-87 3-83 3-87 3-83 3-87 3-88
Configuring Configuring CFC Diagnostic data Download COM database Error class Hardware and software LED Memory SS52 Parameterization Parameterizing SIEMENS DP slaves SYNC/FREEZE Transmit- and receive blocks Typical configuration PROFIBUS FDL Central coupling block Communications Data entries at address connection Data entries at address connection Data quantities Hardware sampling times PROFIBUS FMS	3-47, 3-70 3-67 3-54 3-54 3-62 3-67 3-62 3-67 3-61 3-80 3-77 3-73 3-56 3-50 3-69 3-64 3-83 3-85 3-85 3-85 3-85 3-85 3-87 3-83
Configuring Configuring CFC Diagnostic data Download COM database Error class Hardware and software LED Memory SS52. Parameterization Parameterizing SIEMENS DP slaves SYNC/FREEZE Transmit- and receive blocks Typical configuration PROFIBUS FDL Central coupling block Communications Data entries at address connection Data quantities Hardware sampling times PROFIBUS FMS Address parameters Broadcast	3-47, 3-70 3-67 3-54 3-61 3-62 3-67 3-61 3-77 3-73 3-56 3-50 3-69 3-64 3-83 3-85 3-85 3-85 3-87 3-83 3-87 3-88 3-87 3-88 3-80 3-80 3-80 3-80 3-95
Configuring Configuring CFC Diagnostic data Download COM database Error class Hardware and software LED Memory SS52 Parameterization Parameterizing SIEMENS DP slaves SYNC/FREEZE Transmit- and receive blocks Typical configuration PROFIBUS FDL Central coupling block Communications Data entries at address connection Data quantities Hardware sampling times PROFIBUS FMS Address parameters Broadcast Central block coupling	3-47, 3-70 3-67 3-67 3-54 3-62 3-62 3-67 3-61 3-80 3-77 3-73 3-56 3-50 3-69 3-64 3-85 3-85 3-85 3-85 3-87 3-87 3-88 3-87 3-88 3-87 3-87 3-88 3-80 3-80 3-80 3-95 3-90
Configuring Configuring CFC Diagnostic data Download COM database Error class Hardware and software LED Memory SS52 Parameterization Parameterizing SIEMENS DP slaves SYNC/FREEZE Transmit- and receive blocks Typical configuration PROFIBUS FDL Central coupling block Communications Data entries at address connection Data quantities Hardware sampling times PROFIBUS FMS Address parameters Broadcast Central block coupling	3-47, 3-70 3-67 3-54 3-62 3-62 3-67 3-61 3-77 3-73 3-73 3-56 3-50 3-69 3-64 3-85 3-85 3-85 3-85 3-87 3-83 3-87 3-88 3-80 3-80 3-80 3-90 3-90 3-90 3-90 3-91

Communication utilities	
Communications association	
Data entries at address connection	
Data quantities and sampling times	
FMS structure	
FMS utilities	
FMS utility	
Hardware	
Messages	
Process data	
Server	
Variable name	
Pseudo comments	

R

Read parameter

S

Service	3-288
Function block SER	3-289
System load	3-290
Service utility	
SER function block	.2-39
System loading, response times	.2-40
Signal transfer	.2-17
Ťask	.2-18
SIMATIC Operator Panel	
Alarm message	3-298
Block I/O	3-295
Computation times, function blocks	3-303
Configuration HWConfig	3-293
Configuring CFC	3-294
Event	3-297
Example of a configuration	3-292
Function keyboard	3-299
Initialization	3-295
Interface area	3-300
ProTool/Lite Configuring	3-302
Requirements	3-292
Symbol table	3-301
SIMOLINK	
Features	3-160
Master slave functionality	3-162
Number of nodes on the ring	3-173
SINEC H1	
Application associations	.3-45
Central coupling block	.3-34
Data transport connections	. 3-45
Hardware	. 3-32
Layer 2	. 3-34
Layer 4	. 3-37
Layer 7	. 3-38
message structure	. 3-43

Overview	
Process data layer 7 (STF)	
SIMADYN D system time	
STF utility	3-40, 3-42
STF variable structure	3-41, 3-43
SINEC L2 FDL	
SINEC L2-FMS	
Slot number	
Standard closed-loop thyristor current control	
Field current setpoint output	5-47
Function	
Gating unit	
SITOR set configuration	5-6
Switch-over logic stage	
Standard closed-loop thyristor current control	
Function blocks	5-5
Standard mode	2-25
STF variable name	
Subrack coupling	
Configuring	
Hardware structure	
Response	
Restart frequency	
Scope of supply	
Symbol table	
System chart	
System mode	2-24
System status user stop	2-15

Т

Table function	
Task administrator	
Task processing	
Technology module T400	
Units	
Time of day synchronization	
Troubleshooting	
Background processing	2-43
F F S	2 10

U

3-138
3-141
3-146

Configuring	
Initialization	
Receiving	
Transmitting	
V24/RS232	
Utility programs	

V

V24/RS232	
Virtual connections	

W

WinCC via MPI	
WinCC via SINEC H1	