GE Grid Solutions

Multilin UR & UR^{Plus}

Proven, State-of-the-Art Protection & Control Systems

From the power plant to the power consumer, the MultilinTM UR & UR^{Plus} family of advanced protection and control relays provides one integrated platform that delivers leading edge protection, control, monitoring & metering solutions for critical power system applications. Featuring proven protection algorithms, expandable I/O, integrated monitoring & high accuracy metering capabilities with the latest in communications technologies, the Multilin UR & UR^{Plus} family of devices provides the situational awareness needed for a reliable, secure and efficient modern grid.

Key Benefits

- Modular construction: common hardware, reduced stock of pare parts, plug & play modules for maintenance cost savings and simplification (Multilin UR)
- Proven flexibility and customization capabilities make the Multilin UR/UR^{Plus} devices suitable to retrofit almost any kind of legacy P&C scheme
- Large HMI and annunciator panels provide local monitoring & control capabilities, and backup the substation HMI
- Phase measurement Unit (synchrophasors) according to IEEE® C37.118 (2011) and IEC® 61850-90-5 directly streamed from your protective device
- Embedded IEEE 1588 Time Synchronization Protocol support eliminates dedicated IRIG-B wiring requirements for P&C devices (Multilin UR)
- Advanced IEC 61850 Ed. 1 and Ed. 2 certified implementation, complete settings via SCL files and comprehensive process bus support (IEC 61850-9-2LE or IEC 61869 or IEC 61850-9-2 Hardfiber) ensures interoperability, device managing optimization and reduced cost of ownership
- Routable GOOSE (R-GOOSE) enables customer to send GOOSE messages beyond the substation, which enables WAPC and more cost effective communication architectures for wide area applications
- Increased network availability via failover time reduced to zero through IEC[®] 62439-3 "PRP" support
- Supports IEEE C37.111-1999/2013, IEC 60255-24 Ed 2.0 COMTRADE standard

Applications

- Protection, control, monitoring and supervision of power assets across generation, transmission, distribution, substation and industrial systems
- Utility substation and industrial plant automation
- Digital fault recording and Sequence of Event (SOE) recording
- Predictive maintenance through data analysis and trending
- Synchrophasors based monitoring and control system with specialized PMU devices that support multiple feeders providing P&M class synchrophasors of voltage, current, and sequence components
- Complex protection & control and wide area monitoring solutions with complete diagnostic and automation capabilities (Multilin ${\sf UR}^{\sf Plus})$

ee 86

imagination at work

Protection and Control

- Fast, segregated line current differential & distance protection functionality in one device
- Phase distance (5 zones) with independent settings for compensation
- Single-pole tripping, breaker-and-a-half with independent current source support
- Comprehensive generator protection with 100% stator and field ground fault detection
- Protection and control functionality in one box, reducing the number of devices
- Integrated large, full color display, for real-time visualization and control of the protected bay

Advanced Communications

- 3 independent Ethernet ports for simultaneous & dedicated network connections with IEEE 1588 support
- IEC 61850-9-2LE/IEC 61869 networked or IEC61850-9-2 Hardfiber process bus support

Cyber Security

 CyberSentry[™] provides high-end cyber security aligned to industry standards and services (NERC[®] CIP, AAA, Radius, RBAC, Syslog)

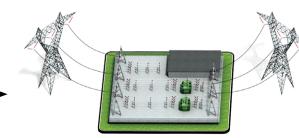
Monitoring & Metering

- Advanced recording capabilities, configurable & extended waveform capture and data logger
- Fault locator fault reports & programmable
- Breaker condition monitoring including breaker arcing current (I2t), breaker re-strike and breaker flashover
- Metering: current, voltage, power factor, frequency, voltage & current harmonics, energy, demand, phasors, etc.

UR & UR^{Plus} Market Offerings

Generation

G60


Medium to Large Generators

The G60 provides comprehensive primary and backup protection for medium and large generators, including large steam and combustion turbines, combined-cycle generators and multi-circuit hydro units. The G60 includes advanced automation and communication capabilities, extensive I/O options, and powerful fault recording features that simplify postmortem analysis and minimize generator downtime.

G30

Combined Generator & Transformer Protection

The G30 is a flexible system that can be used on small and medium generators, generator and step-up transformer arrangements or backup protection of large generators. Similar to the G60, the G30 also offers comprehensive protection and monitoring elements.

Transmission & Distribution

D90^{Plus}

Sub-Cycle Distance Protection

The D90^{Plus} is ideally suited for application on transmission lines where fast fault detection and small breaker failure margin are required. The D90^{Plus} allows transmission limits to be maintained or even increased while respecting the transient stability limits of the power system.

D60

Fully Featured Distance Protection

The D60 is the ideal solution for providing reliable and secure primary and backup protection of transmission lines supporting: series compensation, teleprotection schemes, five mho or quad distance zones, single or three-pole tripping, breaker-and-half with independent current inputs, phasor measurement units (PMUs), and more.

D30

Backup Distance Protection

The D30 is the cost-effective choice for the primary protection of sub-transmission systems or backup protection of transmission systems. Using FlexLogic™ elements, basic pilot schemes can be programmed. The D30 has complementary protection, control, communication, monitoring and metering functions that meet the toughest requirements of the market.

L90

Complete Line Protection

The L90 is a fast and powerful high-end phase-segregated line current differential and complete distance protection system, suitable for MV cables, two or three terminal transmission lines having breaker-and-half and single or three-pole tripping schemes.

L60

Line Phase Comparison Protection

The L60 is an extremely fast line phase comparison system, suitable for two or three terminal transmission lines. This system is able to operate using power line carrier or fiber optic communications.

L30

Sub-Transmission Line Current Differential Protection

The L30 is a cost-effective phase-segregated line current differential system intended to provide primary protection for MV cables and two/three-terminal sub-transmission lines or backup protection to transmission lines.

B90

Low Impedance Busbar Protection

The B90 is an advanced low-impedance differential protection system that is intended to cover applications ranging from small to large substations, having either single or complexsplit busbar schemes. It is able to support busbars with up to 24 breakers, and 4 single phase differential zones.

B30

Low Impedance Busbar Protection

The B30 is a cost-effective, advanced protection system that fits busbars with up to 6 circuits and two protection zones. The B30 provides advanced elements like CT trouble, directional and CT saturation, breaker failure and voltage supervision that make the B30 an extremely fast and secure busbar protection system. B30 also fits conventional centralized or process bus based distributed bus bar protectionschemes.

B95^{Plus}

Distributed Busbar Protection System

The B95^{Plus} is GE's distributed busbar solution that can be applied to any kind of busbar configuration and uses standard IEC 61850 protocol to connect to the bay units. The B95^{Plus} delivers comprehensive and reliable protection for busbar applications with up to 24 feeders.

F60

Feeder Protection with Hi-Z Fault Detection

The F60 provides comprehensive feeder protection, control, advanced communications, monitoring and metering in an integrated, economical, and compact package and more.

F35

Multiple Feeder Protection

The F35 is a cost-effective device for primary feeder protection. F35's modular design allows customers to protect groups of feeders as follows: independent current and voltage inputs, independent current and common voltage inputs or independent current inputs only.

C70

Capacitor Bank Protection

The C70 is an integrated protection, control, and monitoring device for shunt capacitor banks. The current and voltage-based protection functions are designed to provide sensitive protection for grounded, ungrounded single and parallel capacitor banks and banks with taps.

T60

Medium to Large Transformers

The T60 is a fully featured transformer protection system suitable for power transformers of any size that require current differential function. The T60 provides automatic or user-definable magnitude reference winding selection for CT ratio matching, and performs automatic phase shift compensation for all types of transformer winding connections.

T35

Basic Transformer Protection, Multiple CTs

The T35 is a basic transformer protection system capable of protecting combined main power transformers and up to five feeders downstream. The T35 provides automatic or user-definable magnitude reference winding selection for CT ratio matching, automatic phase shift compensation and allows users to enable removal of the zero-sequence current even for delta connected transformer windings.

C90^{Plus}

Breaker Automation and Controller

The C90^{Plus} is a powerful logic controller designed to be used in substation environments and for the unique automation requirements of industrial and utility power systems. The C90^{Plus} provides unmatched logic processing ability combined with a powerful math engine with deterministic execution of logic equations regardless of the configuration of the number of lines of logic.

C60

Breaker Controller

The C60 is a substation hardened controller that provides a complete integrated package for the protection, control, and monitoring of circuit breakers, supporting dual-breaker busbar configurations, such as breaker-and-half or ring bus schemes.

C30

I/O Logic Controller

The C30 is designed to perform substation control logic that can also expand the I/O capability of protection devices and replace existing Sequence of Events (SOE) recorders.

Industrial & Network

M60

Motor Protection

The M60 offers comprehensive protection and control solutions for large-sized three-phase motors. The M60 provides superior protection, control, and diagnostics that includes thermal model with RTD and current unbalance biasing, stator differential, reverse and low forward power, external RRTD module, two-speed motors, reduced voltage starting, broken rotor bar detection, and more.

N60

Network Stability and Synchrophasor Measurement

The N60 is intended to be used on load shedding, remedial action, special protection and wide area monitoring and control schemes. Like no one device before, the N60 shares real-time operational data to remote N60s so the system can generate intelligent decisions to maintain power system operation.

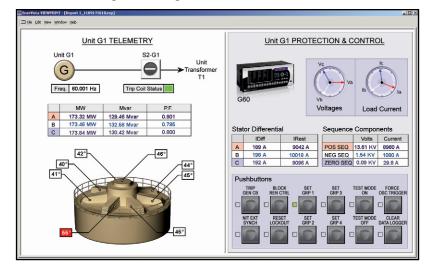
Overview

The Universal Relay (UR) is a family of leading edge protection and control products built on a common modular platform. All UR products feature high-performance protection, expandable I/O options, integrated monitoring and metering, high-speed communications, and extensive programming and configuration capabilities. The UR forms the basis of simplified power management for the protection of critical assets, either as a stand-alone device or within an overall power automation system.

The UR is managed and programmed through EnerVista Launchpad. This powerful software package, which is included with each relay, not only allows the setpoints of the relay to be programmed, but also provides the capability to manage setpoint files, automatically access the latest versions of firmware/documentation and provide a window into the substation automation system.

The UR can be supplied in a variety of configurations and is available as a 19-inch rack horizontal mount unit or a reduced size (¾) vertical mount unit. The UR consists of the following modules: power supply, CPU, CT/VT input, digital input/output, transducer input/output, inter-relay communications, communication switch and IEC 61850 Process Bus. All hardware modules and software options can be specified at the time of ordering.

Protection and Control


The UR incorporates the most complete and unique protection algorithms to provide unparalleled security and system uptime. The UR selector guide (in the following pages) lists all the protection elements found in each relay.

To support the protection and control functions of the UR, various types and forms of I/O are available (specific capabilities are model dependent). Supported I/Os include:

CTs and VTs

Up to 24 analog current transformer (CT) and voltage transformer (VT) signals can be configured to monitor AC power lines. Both 1 A and 5 A CTs are supported. Special function modules are available including: a CT module with sensitive ground input to provide ground fault protection on high-impedance grounded systems, and a high-impedance fault detection module that provides fast and reliable detection of faults caused by downed conductors.

UR - Protection, Metering, Monitoring and Control

The UR is the single point for protection, control, metering, and monitoring in one integrated device that can easily be connected directly into DCS or SCADA monitoring and control systems like Viewpoint Monitoring as shown.

Digital I/O

Up to 96 contact inputs (with utility voltage rating up to 250V), and up to 64 contact outputs, are available and can be used to monitor and control a wide range of auxiliary equipment found within a substation or other protection application. Types of digital I/O cards include trip-rated Form-A, Form-C, Fast Form-C, latching and Solid State Relay (SSR), with or without DC voltage, current monitoring and isolated inputs (with auto burnish feature). Mechanically latching outputs can be used to develop secure interlocking applications and replace mechanical switches and lockout relays. Form-A digital outputs have activation speeds of less than 4ms and both wet and dry contacts are supported.

Solid state output modules with high current breaking capability, fast tripping and reset time are ideal for direct tripping applications.

Transducer I/O

RTDs and DCmA cards are available to monitor system parameters, such as temperature, vibration, pressure, wind speed, and flow. Analog outputs can be used for hardwired connections from the controller to a SCADA system, to a programmable logic controller (PLC), or to other user interface devices (eg. panel display).

Advanced Automation

The UR incorporates advanced automation features including powerful FlexLogic programmable logic, communication, and SCADA capabilities that far surpass what is found in the average protection relay. Each UR can be seamlessly integrated with other UR relays for complete system protection and control.

FlexLogic

FlexLogic is the powerful UR-platform programming logic engine that provides the ability to create customized protection and control schemes, minimizing the need and associated costs of, auxiliary components and wiring. With 1024 lines of FlexLogic, the UR can be programmed to provide the required tripping logic along with custom scheme logic for breaker control (including interlocking with external synchronizers), transfer tripping schemes for remote breakers and dynamic setting group changes.

Scalable Hardware

The UR is available with a multitude of I/O configurations to suit the most demanding application needs. The expandable modular design allows for easy configuration and future upgrades.

- Multiple CT/VT configurations allow for the implementation of many different schemes, including concurrent split-phase and differential protection
- Flexible, modular high density I/O covering a broad range of input signals and tripping schemes with trip rated Form-A for high density outputs and Trip rated Form A, SSR, Form-C and mechanically latched relays for normal outputs
- Inter-relay communications module that enables the sharing of digital status and analog values between UR relays for control, fast tripping or teleprotection applications

	Ready to Capture	Memory Available
Fault Report	9	0
Transient Recorder	9	0
Disturbance Recorder	•	0
Records	Latest	Total
Events	Mar 05 2009 12:23:23:637727	431
Faults	Mar 05 2009 12:23:20:735543	1
Transients	Mar 05 2009 12:23:20:721634	1
Disturbances	Mar 04 2009 02:47:12:346789	3
Summary SO	E Fault Reports Trans	

Digital fault recorder summary with the latest information on the events, faults, transients and disturbances.

- Types of digital outputs include trip-rated Form-A and SSR mechanically latching, and Form-C outputs
- Form-A and SSR outputs available with optional circuit continuity monitoring and current detection to verify continuity and health of the associated circuitry
- IEC 61850 Process Bus delivering advanced protection and control capabilities while providing significant savings on the total life cost of electrical substations
- RTDs and DCmA inputs are available to monitor equipment parameters such as temperature and pressure

Monitoring and Metering

The UR includes high accuracy metering and recording for all AC signals. Voltage, current, and power metering are built into the relay as a standard feature. Current and voltage parameters are available as total RMS magnitude, and as fundamental frequency magnitude and angle.

Fault and Disturbance Recording

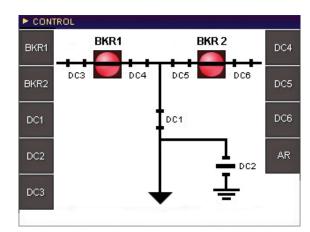
The advanced disturbance and event recording features within the UR can significantly reduce the time needed for postmortem analysis of power system events and the creation of regulatory reports. Recording functions include:

- Sequence of Event (SOE)
 - 1024 time stamped events (UR Relays)
 - 8192 time stamped events (URPlus)
- Oscillography
 - Supports IEEE C37.111-1999/2013, IEC 60255-24 Ed 2.0 COMTRADE standard
 - 64 digital & up to 40 analog channels Events with up to 45s length
- Data Logger and Disturbance Recording - 16 channels up to 1 sample/cycle/channel

 Fault Reports
 Powerful summary report of pre-fault and fault values

The very high sampling rate and large amounts of storage space available for data recording in the UR allows for the capture of complex events and can eliminate the need for installing costly stand-alone recording equipment.

Advanced Device Health Diagnostics


The UR performs comprehensive device health diagnostic tests at startup and continuously during run-time to test its own major functions and critical hardware. These diagnostic tests monitor for conditions that could impact security and availability of protection, and present device status via SCADA communications and front panel display. Providing continuous monitoring and early detection of possible issues help improve system uptime.

- Comprehensive device health diagnostic performed at startup
- Monitors the CT/VT input circuitry to validate the integrity of all signals
- Monitors internal DC voltage levels that allows for proactive maintenance and increased uptime

PMU - Synchrophasors

With the ability of having up to 6 PMU elements in one device, UR devices provide simultaneous data streams of up to four different clients.

UR devices exceed the IEEE C37.118 (2011) requirements for Total Vector Error (TVE) less than 1% over a range of 40Hz to 70Hz, and are able to measure and report synchrophasors over a frequency range from 30Hz to 90Hz with little effect on TVE.

Control screen for the preconfigured bay with breaker & disconnect control in multiple pages using dedicated pushbuttons in the front panel.

A special feature of the synchrophasor implementation is the ability to apply magnitude and phase angle correction on a per-phase basis for known CT and PT magnitude and phase errors. Selected UR devices can apply a phase correction on each phase of up to $\pm 5^{\circ}$ in increments of 0.05°. They also provide the ability to adjust for deltawye phase angle shifts or polarity reversal in the synchrophasor reporting of the voltage and current sequence components.

UR devices can stream PMU data through any of its three Ethernet ports using either IEEE C37.118 or IEC 61850-90-5 data formats. When streaming PMU data through a single port, a failover function can automatically switch the transmission over another Ethernet port.

Selected UR devices also support up to 16 userdefinable command outputs via the command frame defined in the IEEE C37.118 standard.

PMU recording

UR devices include high accuracy metering and recording for all AC signals. Voltage, current. frequency, power and energy and demand metering are built into the relay as a standard feature. Current and voltage parameters are available as total RMS magnitude, and as fundamental frequency magnitude and angle. UR devices have 12MB of synchrophasor recording memory with multiple recording and triggering options. The PMU recorder can be triggered by an over/under frequency, over/ under voltage, overcurrent, overpower, rate of change of frequency condition, or by a userspecified condition, freely configured through FlexLogic. The PMU status flag shows which of those functions triggered the PMU recorder.

UR Technical Specifications

PROTECTION	
100% STATOR GROU Operating quantity:	V neutral 3rd/(V neutral 3rd +
operating quantity.	V_neutral_3rd/(V_neutral_3rd + V_zero_3rd)
Pickup level:	0.000 to 0.250 pu in steps of 0.001
Dropout level:	97 to 98% of pickup
Level accuracy:	±2% of reading from 1 to 120 V
Pickup delay:	0 to 600.00 s in steps of 0.01 0.0010 to 0.1000 pu in steps of 0.0001
3rd harmonic supervision level:	0.0010 to 0.1000 pu in steps of 0.0001
Time accuracy:	±3% or ±20 ms, whichever is greater
Operate time: ACCELERATION TIME	< 30 ms at 1.10 × Pickup at 60 Hz
Acceleration	1.00 to 10.00 × FLA in steps of 0.01
current:	0.00 to 180.00 c in stone of 0.01
Acceleration time: Operating mode:	0.00 to 180.00 s in steps of 0.01 Definite Time, Adaptive
ACCIDENTAL ENERGI	ZATION
Operating condition:	
Arming condition:	Undervoltage and/or Machine Offline
Overcurrent:	0.001 7.000 1 1 60.001
Pickup level:	0.02 to 3.000 pu in steps of 0.001
Dropout level: Level accuracy:	97 to 98% of pickup ±0.5% of reading from 0.1 to 2.0 ×
Ecver accuracy.	CT rating
Undervoltage:	
Pickup level:	0.004 to 3.000 pu in steps of 0.001
Dropout level:	102 to 103% of pickup
Level accuracy: Operate Time:	±0.5% of reading 10 to 208 V
AUTORECLOSURE C6	< 30 ms at 1.10 × Pickup at 60 Hz
Two breakers applicat	
Single- and three-pole	e tripping schemes
Up to 4 reclose attem	pts before lockout
Selectable reclosing m	node and breaker sequence
AUTORECLOSURE F60	0/55/050
Single breaker applica	ations, 3-pole tripping schemes
Single breaker applice Up to 4 reclose attem	ations, 3-pole tripping schemes pts before lockout
Single breaker applice Up to 4 reclose attem Independent dead tim	ations, 3-pole tripping schemes pts before lockout ne setting before each shot
Single breaker applice Up to 4 reclose attem Independent dead tim Possibility of changing	ations, 3-pole tripping schemes pts before lockout
Single breaker applico Up to 4 reclose atterm Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE	ttions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot witl
Single breaker applico Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load	ations, 3-pole tripping schemes pts before lockout ne setting before each shot
Single breaker applico Up to 4 reclose attern Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps:	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: I_1 and 1_2 amps:	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS Phasor
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: I_1 and 1_2 amps: Pickup level:	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: I_1 and 1_2 amps:	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS Phasor
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changinc FlexLogic. AMP UNBALANCE Avg and Full Load amps: L1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay:	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: I_1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay:	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: 1_1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time:	tions, 3-pole tripping schemes pts before lockout le setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 < 20 m s at 1.10 x pickup at 60 Hz
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: 1_1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time:	tions, 3-pole tripping schemes pts before lockout le setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 < 20 m s at 1.10 x pickup at 60 Hz
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: I_1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: AUXILIARY VERVOLT	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 <20 ms at 1.10 × pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: I_1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: AUXILARY OVERVOLT Pickup level:	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 <20 ms at 1.10 × pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: _1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: AUXILIARY OVERVOLT Pickup level: Dropout level: Dropout level: Level accuracy:	tions, 3-pole tripping schemes pts before lockout le setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 < 20 ms at 1.10 x pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L 1 and 1_2 amps: Prickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: AUXILIARY OVERVOLT Pickup level: Dropout level: Dropout level: Dropout level: Level accuracy: Pickup delay:	tions, 3-pole tripping schemes pts before lockout is setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2 com sat 1.10 × pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: AUXILIARY OVERVOLT Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay:	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS Phosor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 < 20 ms at 1.10 × pickup at 60 Hz ±3% or ±20 ms, whichever is greater IAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L 1 and 1_2 amps: Prickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: AUXILIARY OVERVOLT Pickup level: Dropout level: Dropout level: Dropout level: Level accuracy: Pickup delay:	tions, 3-pole tripping schemes pts before lockout is setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2.20 ms at 1.10 x pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 ±3% of oprate time or ±4 ms
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L 1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: AUXILIARY OVERVOLT Pickup level: Level accuracy: Pickup delay: Reset delay: Reset delay: Reset delay: Reset delay: Reset delay: Reset delay: Reset delay:	tions, 3-pole tripping schemes pts before lockout is setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2.20 ms at 1.10 x pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 ±3% of oprate time or ±4 ms
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: 1_1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup level: Dropout level: Level accuracy: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Reset delay: Timing accuracy: Operate time:	tions, 3-pole tripping schemes pts before lockout is setting before each shot protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2.20 ms at 1.10 x pickup at 60 Hz ±3% or ±20 ms, whichever is greater 4.05% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) <30 ms at 1.10 x pickup at 60 Hz
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup delay: Level accuracy: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Reset delay: Timing accuracy: Operate time: AUXILIARY UNDERVO	tions, 3-pole tripping schemes pts before lockout le setting before each shot protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2 ±3% or ±20 ms, whichever is greater AGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) <30 ms at 1.10 × pickup at 60 Hz LTAGE 0.004 to 3.000 pu in steps of 0.01
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L_1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup delay: Reset delay: Dropout level: Dropout level: Level accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Dropout level: Dropout level: Dropout level:	tions, 3-pole tripping schemes pts before lockout is setting before each shot protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2.20 ms at 1.10 x pickup at 60 Hz ±3% or ±20 ms, whichever is greater IAGE 0.004 to 3.000 pu in steps of 0.01 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) <30 ms at 1.10 x pickup at 60 Hz LTAGE 0.004 to 3.000 pu in steps of 0.001 102 to 103% of pickup
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L 1 and 1_2 amps: Prickup level: Dropout level: Level accuracy: Pickup level: Dropout level: Dropout level: Dropout level: Dropout level: Dropout level: Dropout level: Dropout level: Dropout level: Coperate time: AUXILIARY UNDERVO Pickup level: Dropout leve	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 < 20 ms at 1.10 × pickup at 60 Hz ±3% or 120 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.01 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) < 30 ms at 1.10 × pickup at 60 Hz ETAGE 0.004 to 3.000 pu in steps of 0.001 102 to 103% of pickup =0.5% of reading from 10 to 208 V
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: 1_1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup level: Dropout level: Level accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Dropout level: Dropout level: Dropout level: Dropout level: Dropout level: Dropout level: Level accuracy: Curve shapes:	tions, 3-pole tripping schemes pts before lockout le setting before each shot protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 4.20 ms at 1.10 × pickup at 60 Hz ±3% or ±20 ms, whichever is greater 4.3% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) 4.3% of pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) 4.30 ms at 1.10 × pickup at 60 Hz LTAGE 0.004 to 3.000 pu in steps of 0.001 102 to 103% of pickup ±0.5% of reading from 10 to 208 V GE IAV Inverse, Definite Time
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Operate time: Timing accuracy: Pickup vEVENULT Propout level: Dropout level: Dropout level: Dropout level: Dropout level: Dropout level: Dropout level: Level accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Curve shapes: Curve multiplier:	tions, 3-pole tripping schemes pts before lockout is setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2.20 ms at 1.10 x pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 23% of oprate time or ±4 ms (whichever is greater) <30 ms at 1.10 x pickup at 60 Hz LTAGE 0.004 to 3.000 pu in steps of 0.001 102 to 103% of pickup ±0.5% of reading from 10 to 208 V GE IAV Inverse, Definite Time Time Dial = 0 to 600.00 in steps of 0.01
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Operate time: Timing accuracy: Pickup vEVENULT Propout level: Dropout level: Dropout level: Dropout level: Dropout level: Dropout level: Dropout level: Level accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Curve shapes: Curve multiplier:	tions, 3-pole tripping schemes pts before lockout le setting before each shot g protection settings ofter each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2 to 3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) <1.000 to 3.000 pu in steps of 0.001 102 to 103% of pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.001 ±3% of operate time or ±000 to 208 V 6E IAV Inverse, Definite Time Time Dial = 0 to 600.00 in steps of 0.01 ±3% of operate time or ±4 ms
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L_1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup delay: Reset delay: Dropout level: Dropout level: Dropout level: Level accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time: AUXILIARY OVERVOLT Pickup level: Dropout level: Level accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Curve shapes: Curve multiplier: Timing accuracy:	tions, 3-pole tripping schemes pts before lockout is setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 c.20 ms at 1.10 x pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 21 steps of 0.01 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) ±0.5% of reading from 10 to 208 V GE IAVI Inverse, Definite Time Time Dial = 0 to 600.00 in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater)
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L 1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Dropout level: Level accuracy: Pickup level: Dropout level: Level accuracy: Pickup level: Dropout level: Level accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Operate time: Curve multiplier: Timing accuracy: BREAKER ARCING CU	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2.20 ms at 1.10 × pickup at 60 Hz ±3% of ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.01 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 2.5% of reading from 10 to 208 V 2.5% of reading from 10 to 208 V GE IAV Inverse, Definite Time Time Dial = 0 to 600.00 in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) #3% of operate time or ±4 ms (whichever is greater) #3% of operate time or ±4 ms (whichever is greater) #3% of operate time or ±4 ms
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time: AUXILIARY OVERVOLT Pickup level: Dropout level: Level accuracy: Pickup level: Dropout level: Level accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Curve shapes: Curve multiplier: Timing accuracy: BREAKER ARCING CU Principle:	tions, 3-pole tripping schemes pts before lockout is setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2.20 ms at 1.10 x pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 1 to 600.00 s in steps of 0.01 1 to 3000 pu in steps of 0.01 1 to 3000 pu in steps of 0.01 1 to 300 s of pickup ±0.5% of reading from 10 to 208 V GE IAV Inverse, Definite Time Time Dial = 0 to 600.00 in steps of 0.01 1 to 3% of operate time or ±4 ms (whichever is greater) REENT Accumulates breaker duty (121 and meosures foult duration
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L 1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Dropout level: Level accuracy: Pickup level: Dropout level: Level accuracy: Pickup level: Dropout level: Level accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Curve shapes: Curve multiplier: Timing accuracy: BREAKER ARCING CU	ttions, 3-pole tripping schemes pts before lockout le setting before each shot protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 p uin steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) <cage 1.0004 to 3.000 p uin steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) ±3% of operate time or ±4 ms (whichever is greater) RENT RENT</cage
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: 1_1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup delay: Reset delay: Timing accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time: AUXILIARY OVERVOLT Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Curve shapes: Curve multiplier: Timing accuracy: BREAKER ARCING CU Principle: Initiation:	ttions, 3-pole tripping schemes pts before lockout le setting before each shot protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 p uin steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) <cage 1.0004 to 3.000 p uin steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) ±3% of operate time or ±4 ms (whichever is greater) RENT RENT</cage
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L 1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time: Timing accuracy: Operate time: Dropout level: Level accuracy: Operate time: Timing accuracy: Dropout level: Level accuracy: Dropout level: Level accuracy: Dropout level: Level accuracy: BREAKER ARCING CU Principle: Initiation: Compensation for	tions, 3-pole tripping schemes pts before lockout is setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2.20 ms at 1.10 x pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 1 to 600.00 s in steps of 0.01 1 to 3000 pu in steps of 0.01 1 to 3000 pu in steps of 0.01 1 to 300 s of pickup ±0.5% of reading from 10 to 208 V GE IAV Inverse, Definite Time Time Dial = 0 to 600.00 in steps of 0.01 1 to 3% of operate time or ±4 ms (whichever is greater) REENT Accumulates breaker duty (121 and meosures foult duration
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: _l and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Dickup level: Dropout level: Level accuracy: BICKUP level: Curve shapes: Curve multiplier: Timing accuracy: BREAKER ARCING CU Principle: Initiation: Compensation for auxiliary relays:	tions, 3-pole tripping schemes pts before lockout protection settings after each shot protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 97 to 98% of Pickup at 60 Hz ±3% or ±20 ms, whichever is greater AGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) ±3% of operate time or ±4 ms (whichever is greater) ±0.5% of reading from 10 to 208 V EI IAU Inverse, Definite Time Time Dial = 0 to 600.00 in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) REENT Accumulates breaker duty (I2t) and measures fault duration Programmable per phase from any FlexLogic operand 0 to 65.535 s in steps of 0.001
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Dropout level: Level accuracy: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time: AUXILIARY OVERVOLT Pickup level: Dropout level: Level accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Curve multiplier: Timing accuracy: BREAKER ARCING CU Principle: Initiation: Compensation for auxiliary relays:	tions, 3-pole tripping schemes pts before lockout is setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2.20 ms at 1.10 x pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 2.3% of operate time or ±4 ms (whichever is greater) 4.3% of operate time or ±4 ms (whichever is greater) 4.3% of operate time or ±4 ms (whichever is greater) 8.2% of operate time or ±4 ms (whichever is greater) RENT Accumulates breaker duty (I2t) and measures fault duration Programmable per phase from any FlexLogic operand 0 to 65:535 s in steps of 0.001 0 to 50000 kA2-cycle in steps of 1
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: _l and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Dickup level: Dropout level: Level accuracy: BICKUP level: Curve shapes: Curve multiplier: Timing accuracy: BREAKER ARCING CU Principle: Initiation: Compensation for auxiliary relays:	tions, 3-pole tripping schemes pts before lockout protection settings after each shot protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 97 to 98% of Pickup at 60 Hz ±3% or ±20 ms, whichever is greater AGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) ±3% of operate time or ±4 ms (whichever is greater) ±0.5% of reading from 10 to 208 V EI IAU Inverse, Definite Time Time Dial = 0 to 600.00 in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) REENT Accumulates breaker duty (I2t) and measures fault duration Programmable per phase from any FlexLogic operand 0 to 65.535 s in steps of 0.001

PROTECTION	
PROTECTION BREAKER FAILURE	1 colo 7 colo
Mode: Current supervision: Current supv. pickup:	1-pole, 3-pole phase, neutral current 0.02 to 30.000 pu in steps of 0.001
Current supv. dropout:	97 to 98% of pickup
Current supv. accura 0.1 to 2.0 × CT	cy: ±0.75% of reading or ±2% of rated
rating:	(whichever is greater)
above 2 × CT rating: BREAKER FLASHOVER	
Operating quantity:	Phase current, voltage and voltage difference
Pickup level voltage: Dropout level voltage:	0.02 to 1.500 pu in steps of 0.001 97 to 98% of pickup
Pickup level current: Dropout level	0.004 to 1.500 pu in steps of 0.001 97 to 98% of pickup
current: Level accuracy:	±0.5% or ±0.1% of rated, whichever
Pickup delay:	is greater 0 to 65.535 s in steps of 0.001
Time accuracy: Operate time:	±3% or ±42 ms, whichever is greater <42 ms at 1.10 × pickup at 60 Hz
BUS DIFFERENTIAL (8 Pickup level:	
Low slope:	15 to 100% in steps of 1
High slope: Low breakpoint:	50 to 100% in steps of 1 1.00 to 30.00 pu in steps of 0.01
High breakpoint: High set level:	1.00 to 30.00 pu in steps of 0.01 1.00 to 30.00 pu in steps of 0.01 0.10 to 99.99 pu in steps of 0.01
Dropout level: Level accuracy:	97 to 98% of Pickup
0.1 to 2.0 × CT rating:	±0.5% of reading or ±1% of rated (whichever is greater)
>2.0 × CT rating	±1.5% of reading
Operating time: CT TROUBLE	one power system cycle (typical)
Responding to: Pickup level:	Differential current 0.020 to 2.000 pu in steps of 0.001
Pickup delay: Time Accuracy:	1.0 to 60.0 sec. in steps of 0.1 ±3% or ±40ms, whichever is greater
Availability: GENERATOR UNBALA	1 per zone of protection (B90)
Gen. nominal	0.000 to 1.250 pu in steps of 0.001
current: Stages:	2 (I2t with linear reset and definite time)
Pickup level: Dropout level:	0.00 to 100.00% in steps of 0.01 97 to 98% of pickup
Level accuracy: 0.1 to 2 x CT rating:	±0.5% of reading or 1% of rated
> 2.0 x CT rating:	(whichever is greater) ±1.5% of reading
Time dial (K-value): Pickup delay:	0.00 to 100.00 in steps of 0.01 0.0 to 1000.0 s in steps of 0.1
Reset delay:	0.0 to 1000.0 s in steps of 0.1
Time accuracy: Operate time:	±3% or ±20 ms, whichever is greater < 50 ms at 60 Hz
GROUND DISTANCE Characteristic:	Mho (memory polarized or offset)
	or Quad (memory polarized or non- directional), selectable individually per zone
Reactance polarization:	negative-sequence or zero-sequence current
Non-homogeneity angle:	-40 to 40° in steps of 1
Number of zones: Directionality:	5 Forward, Reverse, or Non-Directional
·	per zone
Reach (secondary W):	0.02 to 250.00 in steps of 0.01
Reach accuracy:	±5% including the effect of CVT transients up to an SIR of 30
Distance characteristic angle:	30 to 90° in steps of 1
Distance comparator limit	30 to 90° in steps of 1
angle: Directional supervisio	n
Characteristic angle:	30 to 90° in steps of 1
Limit angle: Zero-sequence comp	
Z0/Z1 magnitude: Z0/Z1 angle:	0.00 to 10.00 in steps of 0.01 -90 to 90° in steps of 1
Zero-sequence mutu ZOM/Z1 magnitude:	
ZOM/Z1 angle: Right blinder (Quad o	-90 to 90° in steps of 1
Reach:	0.02 to 500 in steps of 0.01
Characteristic angle: Left blinder (Quad on	
	0.02 to 500 in steps of 0.01 60 to 90° in steps of 1
Time delay:	0.000 to 65.535 s in steps of 0.001

PROTECTION Timing accuracy:	±3% or 4 ms, whichever is greater
Current supervision:	peutral current (31_0)
Level: Pickup:	neutral current (31_0) 0.050 to 30.000 pu in steps of 0.001
Dropout:	97 to 98%
Memory duration:	5 to 25 cycles in steps of 1
Voltage supervision	0 to 5.000 pu in steps of 0.001
pickup (series compensation	
applications):	
Operation time:	1 to 1.5 cycles (typical)
Reset time:	1 power cycle (typical)
GROUND DISTANCE OP	
	response times of a microprocessor tput contacts specifications for
	esponse time for a particular
	ng times are average times including
source (magnetic VTs ar	nception angle or type of a voltage
30	ld CV15).
29 28	
27	
26	
24 23	
222	
E 20	
17 16	-#-SR=30
15	
13	
11	
0 20 40 60 Fault Location (5)	70 80
LINE CURRENT DIFFERE	
Application:	2 or 3 terminal line, series compensated line, tapped line, with
	charging current compensation
Pickup current level:	0.20 to 4.00 pu in steps of 0.01
CT Tap (CT mismatch	0.20 to 5.00 in steps of 0.01
factor): Slope # 1:	1 to 50%
Slope # 2:	1 to 70%
Breakpoint between	0.0 to 20.0 pu in steps of 0.1
slopes:	
DTT:	Direct Transfer Trip (1 and 3 pole)
Operating Time:	remote L90
Operating Time: Asymmetrical channel	1.0 to 1.5 power cycles duration asymmetry up to 10ms
delay compensation	2
using GPS:	
LINE CURRENT DIFFERE 87L trip:	Adds security for trip decision;
o. = 611p.	creates 1 and 3 pole trip logic
DTT:	Engaged Direct Transfer Trip (1 and
	pole) from remote L90
DD:	Sensitive Disturbance Detector to
Stub bus protection:	detect fault occurrence
Stub bus protection:	Security for ring bus and 1½ break configurations
Open pole detector:	Security for sequential and evolving
	faults
LINE PICKUP	0.02 to 70.000 pt
Phase IOC:	0.02 to 30.000 pu
Undervoltage pickup: Overvoltage delay:	0.004 to 3.000 pu 0.000 to 65.535 s
LOAD ENCROACHMENT	
Responds to:	Positive-sequence quantities
Minimum voltage:	0.004 to 3.000 pu in steps of 0.001
Reach (sec. W):	0.02 to 250.00 in steps of 0.01
Impedance accuracy: Angle:	±5% 5 to 50° in steps of 1
Angle accuracy:	±2°
Pickup delay:	0 to 65.535 s in steps of 0.001
Reset delay:	0 to 65.535 s in steps of 0.001
Time accuracy:	±3% or ±4 ms, whichever is greater
Operate time: LOSS OF EXCITATION	< 30 ms at 60 Hz
Operating condition:	Positive-sequence impedance
Characteristic:	2 independent offset mho circles
Center:	0.10 to 300.0 (sec.) in steps of 0.01
	0.10 to 300.0. (sec.) in steps of 0.01
	±3%
Reach accuracy:	
Reach accuracy: Undervoltage supervisi	
Reach accuracy: Undervoltage supervisi Level:	0.000 to 1.250 pu in steps of 0.001
Reach accuracy: Undervoltage supervisi Level: Accuracy:	0.000 to 1.250 pu in steps of 0.001 ± 0.5% of reading from 10 to 208V
Reach accuracy: Undervoltage supervisi Level: Accuracy: Pickup delay:	$\begin{array}{l} 0.000 \text{ to } 1.250 \text{ pu in steps of } 0.001 \\ \pm 0.5\% \text{ of reading from } 10 \text{ to } 208V \\ 0 \text{ to } 65.535 \text{ s in steps of } 0.001 \end{array}$
Undervoltage supervisi Level:	$\begin{array}{l} 0.000 \text{ to } 1.250 \text{ pu in steps of } 0.001 \\ \pm 0.5\% \text{ of reading from } 10 \text{ to } 208V \\ 0 \text{ to } 65.535 \text{ s in steps of } 0.001 \end{array}$
Reach accuracy: Undervoltage supervisi Level: Accuracy: Pickup delay: Timing accuracy:	0.000 to 1.250 pu in steps of 0.001 ± 0.5% of reading from 10 to 208V 0 to 65.535 s in steps of 0.001 ±3% or ±20 ms, whichever is greate

UR Technical Specifications

PROTECTION	
MECHANICAL JAM	
Operating condition: Arming condition:	Phase overcurrent Motor not starting
Pickup level:	1.00 to 10.00 × FLA in steps of 0.01
Dropout level:	97 to 98% of pickup
Level accuracy: at > 2.0 × CT rating:	at 0.1 to 2.0 × CT: ±0.5% of reading ±1.5% of reading
Pickup delay:	0.10 to 600.00 s in steps of 0.01
Reset delay:	0.00 to 600.00 s in steps of 0.01
Time accuracy: MOTOR START SUPER	±3% or ±20 ms, whichever is greater
Maximum no. of	1 to 16 in steps of 1
starts: Monitored time	1 to 300 minutes in steps of 1
interval:	
	0 to 300 minutes in steps of 1
Restart delay: NEGATIVE SEQUENCE	0 to 50000seconds in steps of 1 DIRECTIONAL OC
Directionality:	Co-existing forward and reverse
Polarizing: Polarizing voltage:	Voltage
Operating current:	V_2 I_2 or I_0
Level sensing:	
Zero-sequence: Negative-sequence:	_0 - K × _1 _2 - K × _1
Restraint, K:	0.000 to 0.500 in steps of 0.001
Characteristic angle:	0 to 90° in steps of 1 40 to 90° in steps of 1, independent for
Limit angle:	forward and reverse
Angle accuracy:	±2°
Offset impedance: Pickup level:	0.00 to 250.00W in steps of 0.01 0.05 to 30.00 pu in steps of 0.01
Dropout level:	97 to 98%
Operation time: NEGATIVE SEQUENCE	< 16 ms at 3 × Pickup at 60 Hz
Current:	Phasor
Pickup level:	0.02 to 30.000 pu in steps of 0.001
Dropout level: Level accuracy:	97 to 98% of Pickup
0.1 to 2.0 × CT	$\pm 0.5\%$ of reading or $\pm 1\%$ of rated
rating:	(whichever is greater)> 2.0 × CT rating: ±1.5% of reading
Overreach:	< 2%
Pickup delay:	0.00 to 600.00 s in steps of 0.01
Reset delay: Operate time:	0.00 to 600.00 s in steps of 0.01 < 20 ms at 3 × Pickup at 60 Hz Operate at 1.5 × Pickup ±3% or ± 4 ms (whichever is greater)
Timing accuracy:	Operate at $1.5 \times \text{Pickup} \pm 3\% \text{ or} \pm 4 \text{ ms}$
NEGATIVE SEQUENCE	
Pickup level:	0.004 to 1.250 pu in steps of 0.001 97 to 98% of Pickup
Dropout level:	97 to 98% of Pickup
Level accuracy: Pickup delay:	±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01
Reset delay:	0 to 600.00 s in steps of 0.01
Time accuracy: Operate time:	±3% or ±20 ms, whichever is greater < 30 ms at 1.10 × Pickup at 60 Hz
NEGATIVE SEQUENCE	TOC
Current: Pickup level:	Phasor 0.02 to 30.000 pu in steps of 0.001
Dropout level:	97% to 98% of Pickup
Level accuracy:	0 EV of roading or 110/ of rated
	(which ever is greater from 0.1 to 2.0 \times CT rating ±1.5% of reading > 2.0 \times CT rating
	CT rating
Curve shapes:	IEEE Moderately/Very/Extremely Inverse: IEC (and BS) A/B/C and Short
	Inverse; IEC (and BS) A/B/C and Short Inverse; GE IAC Inverse, Short/Very/ Extremely Inverse; 12t; FlexCurves.
	(programmable); Definite Time (0.01 s
	base curve)
Curve multiplier (Time dial):	0.00 to 600.00 in steps of 0.01
Reset type:	Instantaneous/Timed (per IEEE) and
Timing accuracy	Lear
Timing accuracy:	Operate at > 1.03 × Actual Pickup ±3.5% of operate time or ±½ cycle
	(whichever is greater)
NEUTRAL DIRECTIONA Directionality:	Co-existing forward and reverse
Polarizing:	Voltage, Current, Dual, Dual-I, Dual-V
Polarizing voltage: Polarizing current:	V_0 or VX IG
Operating current:	I_0
Level sensing:	3 × (I_0 - K × I_1), IG
Restraint, K: Characteristic angle:	0.000 to 0.500 in steps of 0.001 -90 to 90° in steps of 1
Limit angle:	40 to 90° in steps of 1, independent for
Angle accuracy:	forward and reverse ±2°
Offset impedance:	0.00 to 250.00W in steps of 0.01
Pickup level:	0.05 to 30.00 pu in steps of 0.01
Dropout level: Operation time:	97 to 98% < 16 ms at 3 × Pickup at 60 Hz
NEUTRAL OVERVOLTA	GE
Pickup level: Polarizing:	0.004 to 3.000 pu in steps of 0.001 Voltage, Current, Dual, Dual-I, Dual-V
Level accuracy:	±0.5% of reading from 10 to 208 V
Pickup delay: Reset delay:	0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01
Reset delay: Timing accuracy:	$\pm 3\%$ or ± 20 ms (whichever is greater)
Operate time:	< 30 ms at 1.10 × Pickup at 60 Hz

PROTECTION OPEN POLE DETECTOR	B
Detects an open pole of	condition, monitoring breaker auxiliary
contacts, the current in the line	n each phase and optional voltages on
Current pickup level:	0.02 to 30.000 pu in steps of 0.001
Line capacitive reactances (XC1,	300.0 to 9999.9 sec. W in steps of 0.1
XC0):	
Remote current pickup level:	0.02 to 30.000 pu in steps of 0.001
Current dropout	Pickup + 3%, not less than 0.05 pu
level: OVERFREQUENCY	
Pickup level:	20.00 to 65.00 Hz in steps of 0.01
Dropout level: Level accuracy:	Pickup - 0.03 Hz ±0.01 Hz
Time delay:	0 to 65.535 s in steps of 0.001
Timer accuracy: PHASE COMPARISON	±3% or 4 ms, whichever is greater
Signal Selection:	Mixed I_2 - K x I_1 (K=0.00 to 0.25 in steps of 0.01, or3I_0)
Angle Reference:	steps of 0.01, or31_0)
Fault detector low:	0 to 360° leading in steps of 1
Instantaneous	0.02 to 15.00 pu in steps of 0.01
Overcurrent: I ₂ x Z - V ₂ :	0.005 to 15.00 pu in steps of 0.01
dI_2 / d_t :	0.01 to 5.00 pu in steps of 0.01
dI ₁ / dt: Fault detector High:	0.01 to 5.00 pu in steps of 0.01
Instantaneous Overcurrent:	0.10 to 15.00 pu in steps of 0.01
12 x Z - V2:	0.005 to 15.00 pu in steps of 0.01
dI_2 / d_t :	0.01 to 5.00 pu in steps of 0.01
dl ₁ / dt: Signal Symmetry	0.01 to 5.00 pu in steps of 0.01
Adjustment:	-0.5 to 5.0 ms in steps of 0.1
Channel Delay Adjustment:	0.000 to 30.00 ms in steps of 0.001
Channel	channel delay and signal symmetry compensation
Adjustments: Operate Time	3/4 cycle for single phase comparison
(Typical):	First coincidence or enhanced
Trip Security: Second Coincidence	10 to 200 ms in steps of 1
Timer: Enhanced Stability	40 to 180° in steps of 1
Angle:	40 to 100 in steps of 1
PHASE DIRECTIONAL	OVERCURRENT
Relay connection	
Relay connection: Quadrature voltage:	90° (quadrature)
	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}),
Quadrature voltage:	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase C (V _{AB}) phase A (V _{CD}), phase B (V _{AC}).
Quadrature voltage: ABC phase seq.: ACB phase seq.:	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA})
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold:	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase C (V _{AB}) phase A (V _{CB}), phase B (V _{AC}), phase C (V _{BA}) 0.004 to 3.000 pu in steps of 0.001
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA})
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle:	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy:	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2°
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: [FlexI Tripping (reverse	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2°
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: [Flext Tripping (reverse load, forward fault):	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase A (V_{CB}), phase B (V_{AC}), phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 $\pm 2^{\circ}$ ogic elements): < 12 ms, typically
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Characteristic angle: Angle accuracy: Operation time: [Flext Tripping (reverse load, forward fault): Blocking (forward load, reverse fault):	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase C (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 $\pm 2^{\circ}$ ogic elements):
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: [Flext] Tripping (reverse load, forward foult): Blocking (forward	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase A (V_{CB}), phase B (V_{AC}), phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 $\pm 2^{\circ}$ ogic elements): < 12 ms, typically
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flext Tripping (reverse load, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase C (V _{AB}) phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase C (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° ogic elements : < 12 ms, typically < 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or non-
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flext Tripping (reverse load, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase A (V_{CB}), phase B (V_{AC}), phase A (V_{CB}) on the set of 0.001 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 $\pm 2^{\circ}$
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flexi Operation time: (Flexi Blocking (forward load, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones:	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 $\pm 2^{20}$
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flexi Voperation time: (Flexi Blocking (forward load, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality:	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 $\pm 2^{20}$ ogic elements : < 12 ms, typically < 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or non- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (FlexI Tripping (reverse load, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W):	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase C (V_{CB}), phase B (V_{AC}), phase C (V_{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 $\pm 2^{\circ}$
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flext Tripping (reverse load, forward foult): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach (secondary W):	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase C (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° ogic elements : < 12 ms, typically < 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or onn- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 0.01 ±5% including the effect of CVT
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (FlexI Tripping (reverse load, forward fault): Blocking (forward Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach (secondary W): Reach accuracy: Distance:	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase C (V_{CB}), phase B (V_{AC}), phase C (V_{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 $\pm 2^{\circ}$ ogic elements): < 12 ms, typically < 8 ms, typically < 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or offset) or Quad (memory polarized or offset) or Quad (memory polarized or non- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 0.01 $\pm 5\%$ including the effect of CVT transients up to an SIR of 30
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: [Flext] Tripping (reverse load, forward foult): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach accuracy: Distance: Characteristic angle: Comparator limit	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase C (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° ogic elements : < 12 ms, typically < 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or onn- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 0.01 ±5% including the effect of CVT
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (FlexI Tripping (reverse load, forward fault): Blocking (forward Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach (secondary W): Reach accuracy: Distance: Characteristic angle: Comparator limit angle:	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° oigc elements : < 12 ms, typically < 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or offset) or Quad (memory polarized or non- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 0.01 ±5% including the effect of CVT transients up to an SIR of 30 30 to 90° in steps of 1 30 to 90° in steps of 1
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flext Tripping (reverse load, forward fault): Blocking (forward blocking (forward blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach accuracy: Distance: Characteristic angle: Comparator limit angle: Directional supervisio Characteristic angle:	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), olive A (V _{BC}), phase B (V _{AC}), 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 42° • 30 to 90° in steps of 1 30 to 90° in steps of 1 • 30 to 90° in steps of 1
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Fleat) Tripping (reverse load, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Directionality: Reach (secondary W): Reach (secondary W): Reach (secondary W): Reach (secondary W): Characteristic angle: Distance: Characteristic angle: Directional supervisio Characteristic angle:	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase C (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° orgic elements : < 12 ms, typically < 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or offset) or Quad (memory polarized or non- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 0.01 ±5% including the effect of CVT transients up to an SIR of 30 30 to 90° in steps of 1 30 to 90° in steps of 1 30 to 90° in steps of 1
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flext Tripping (reverse load, forward fault): Blocking (forward blocking (forward blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach accuracy: Distance: Characteristic angle: Comparator limit angle: Directional supervisio Characteristic angle:	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase C (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° orgic elements : < 12 ms, typically < 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or offset) or Quad (memory polarized or non- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 0.01 ±5% including the effect of CVT transients up to an SIR of 30 30 to 90° in steps of 1 30 to 90° in steps of 1 30 to 90° in steps of 1
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flext Tripping (reverse load, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach accuracy: Distance: Characteristic angle: Comparator limit angle: Directional supervisio Characteristic angle: Limit angle: Right blinder (Quad on Reach: Characteristic angle:	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase C (V _{BC}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase C (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° ogic elements): < 12 ms, typically × 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or offset) or Quad (memory polarized or non- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 0.01 ±5% including the effect of CVT transients up to an SIR of 30 30 to 90° in steps of 1 30 to 90° in steps of 1 in: 30 to 90° in steps of 1 int to 90° in steps of 1 int to 90° in steps of 1 int to 500 in steps of 1
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Fleat) Tripping (reverse load, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Directionality: Reach (secondary W): Reach (secondary W): Reach (secondary W): Reach (secondary W): Reach (secondary W): Characteristic angle: Characteristic angle: Limit angle: Right blinder (Quad on Reach: Characteristic angle: Left Blinder (Quad on Reach:	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), onumber 2 (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° or Quad (memory polarized or offset) or Quad (memory polarized or offset) or Quad (memory polarized or non- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 1 30 to 90° in steps of 1 30 to 90° in steps of 1 100° in steps of 1 101° in steps of 1 102° to 500 in steps of 1 102° in steps of 1 103° in ste
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flext Tripping (reverse load, forward foult): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach accuracy: Distance: Characteristic angle: Characteristic angle: Characteristic angle: Limit angle: Lim	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase C (V _{AB}) phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase C (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° < 12 ms, typically < 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or non- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 0.01 ±5% including the effect of CVT transients up to an SIR of 30 30 to 90° in steps of 1 30 to 90° in steps of 1 30 to 90° in steps of 1 100 to 90° in steps of 0.01 60 to 90° in steps of 0.01 60 to 90° in steps of 1 100 to 90° in steps of 0.01 100 to 90° in steps of 0.01
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flext Tripping (reverse load, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach accuracy: Distance: Characteristic angle: Comparator limit angle: Directional supervisio Characteristic angle: Limit angle: Right blinder (Quad on Reach: Characteristic angle: Left Blinder (Quad on Reach: Characteristic angle: Limit angle: Characteristic	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), onumber 2 (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° or Quad (memory polarized or offset) or Quad (memory polarized or offset) or Quad (memory polarized or non- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 1 30 to 90° in steps of 1 30 to 90° in steps of 1 100° in steps of 1 101° in steps of 1 102° to 500 in steps of 1 102° in steps of 1 103° in ste
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flext Tripping (reverse load, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach accuracy: Distance: Characteristic angle: Characteristic angle: Characteristic angle: Characteristic angle: Characteristic angle: Limit angle: Directional supervisio: Characteristic angle: Limit angle: Limit angle: Characteristic angle: Limit angle: Characteristic angle: Characteristic angle: Characteristic angle: Characteristic angle: Characteristic angle: Characteristic angle: Timing accuracy: Current supervision:	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), 0.004 to 3.000 pu in steps of 0.001 4.2°
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flext Tripping (reverse load, forward foult): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach accuracy: Distance: Characteristic angle: Characteristic angle: Characteristic angle: Limit angle: Limit angle: Limit angle: Limit angle: Limit angle: Characteristic angle: Limit angle: Characteristic angle: Characteristic angle: Characteristic angle: Limit angle: Characteristic angle: Characteristic angle: Limit angle: Timing accuracy: Current supervision: Level: Pickup:	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase A (V_{CB}), phase B (V_{AC}), phase A (V_{CB}), phase B (V_{AC}), phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 $\pm 2^{20}$ ogic elements): < 12 ms, typically < 8 ms, typically < 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or non- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 0.01 $\pm 5\%$ including the effect of CVT transients up to an SIR of 30 30 to 90° in steps of 1 30 to 90° in steps of 1 30 to 90° in steps of 1 in: 0.02 to 500 in steps of 1 0.02 to 500 in steps of 0.01 60 to 90° in steps of 1 0.02 to 500 in steps of 0.01 $\pm 3\%$ or 4 ms, whichever is greater line-to-line current 0.050 to 30.000 pu in steps of 0.001
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Fleat) Ioad, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Directionality: Reach (secondary W): Reach (secondary W)	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase C (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° orgic elements : < 12 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or non- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 0.01 ±5% including the effect of CVT transients up to an SIR of 30 30 to 90° in steps of 1 30 to 90° in steps of 1 30 to 90° in steps of 1 10): 0.02 to 500 in steps of 1 0.02 to 4 ms, whichever is greater line-to-line current

DEGTECTION	
PROTECTION Memory duration:	5 to 25 cycles in steps of 1
VT location:	all delta-wye and wye-delta
CT location:	transformers all delta-wye and wye-delta
	transformérs
Voltage supervision pickup (series	0 to 5.000 pu in steps of 0.001
compensation	
applications):	ERATING TIME CURVES
The operating times a	re response times of a microprocessor
part of the relay. See of the total	output contacts specifications for I response time for a particular
application. The operc	iting times are average times including
variables such as faul	t inception angle or type of a voltage and CVTs).
source (magnetic VIs	ana CVIS).
30 29	
28 27	
26	
24	
t 19	
17	
16	
14	
12	
10 0 20 40 Foult Loco	60 70 80
PHASE/NEUTRAL/GRO Pickup level:	0.02 to 30.000 pu in steps of 0.001
Dropout level:	97 to 98% of pickup
Level accuracy: 0.1 to 2.0 × CT	±0.5% of reading or ±1% of rated
rating:	(whichever is greater)
> 2.0 × CT rating: Overreach:	±1.5% of reading <2%
Pickup delay:	0.00 to 600.00 s in steps of 0.01
Reset delay: Operate time:	0.00 to 600.00 s in steps of 0.01 <16ms at 3 × pickup at 60Hz (Phase/
operate time.	Ground IOC) <20ms at 3 × pickup at
Timing accuracy:	60Hz (Neutral IOC) Operate at 1.5 × Pickup ±3% or ±4 ms
	(whichever is greater)
PHASE/NEUTRAL/GRO Current:	
Pickup level:	Phasor or RMS 0.02 to 30.000 pu in steps of 0.001
Dropout level:	97% to 98% of Pickup for 0.1 to 2.0 × CT: ±0.5% of reading
Level accuracy:	or $\pm 1\%$ of rated (whichever is greater)
	for > 2.0 × CT: ±1.5% of reading > 2.0 × CT rating
Curve shapes:	IEEE Moderately/Very/Extremely
	Inverse; IEC (and BS) A/B/C and Short Inverse; GE IAC Inverse, Short/Very/
	Extremely Inverse; I2t; FlexCurves.
	(programmable); Definite Time (0.01 s base curve)
Curve multiplier:	Time Dial = 0.00 to 600.00 in steps
	of 0.01
Reset type: Timing accuracy:	Instantaneous/Timed (per IEEE) Operate at > 1.03 × actual Pickup
- *	±3.5% of operate time or ±½ cycle
PHASE OVERVOLTAGE	
Voltage: Rickup level:	Phasor only 0.004 to 3.000 pu in steps of 0.001
Pickup level: Dropout level:	97 to 98% of Pickup
Level accuracy:	±0.5% of reading from 10 to 208V
Pickup delay: Operate time:	0.00 to 600.00 in steps of 0.01 s < 30 ms at 1.10 × Pickup at 60 Hz
Timing accuracy:	±3% or ±4 ms (whichever is greater)
PHASE UNDERVOLTA Voltage:	GE Phasor only
Pickup level:	0.004 to 3.000 pu in steps of 0.001
Dropout level: Level accuracy:	102 to 103% of Pickup ±0.5% of reading from 10 to 208V
Curve shapes:	GE IAV Inverse; Definite Time (0.1s
Curve multiplier:	base curve) Time Dial = 0.00 to 600.00 in steps
	of 0.01
Timing accuracy:	Operate at $< 0.90 \times \text{Pickup } \pm 3.5\%$ of
	operate time or ±4 ms (whichever is greater)
PILOT-AIDED SCHEME	S
Permissive Underrea) Transfer Trip (DUTT) ching Transfer Trip (PUTT)
Permissive Overreacl Hybrid POTT Scheme	ning Transfer Trip (POTT)
Directional Comparis	
Customizable versior and DCB1)	of the POTT and DCB schemes (POTT1

UR Technical Specifications

PROTECTION POWER SWING DETECT	7
Functions:	Power swing block, Out-of-step trip
Characteristic:	Mho or Quad
Measured impedance:	Positive-sequence
Blocking / tripping	2-step or 3-step
nozes:	
Tripping mode:	Early or Delayed
Current supervision:	0.050 / 70.000 / / / / / / / / / / / / / / / / /
Pickup level:	0.050 to 30.000 pu in steps of 0.001
Dropout level:	97 to 98% of Pickup
Fwd / reverse reach sec. W):	0.10 to 500.00W in steps of 0.01
Left and right blinders	0.10 to 500.00W in steps of 0.01
sec. W):	0.10 10 500.0000 11 51203 01 0.01
mpedance accuracy:	±5%
Fwd / reverse angle	40 to 90° in steps of 1
mpedances:	,
Angle accuracy:	±2°
Characteristic limit	40 to 140° in steps of 1
angles:	
limers:	0.000 to 65.535 s in steps of 0.001
Fiming accuracy:	±3% or 4 ms, whichever is greater
RATE OF CHANGE OF F	
df/dt trend:	increasing, decreasing,
f/dt nickun louol	bi-directional 0.10 to 15.00 Hz/s in steps of 0.01
df/dt pickup level: df/dt dropout level:	96% of pickup
df/dt level accuracy:	80 mHz/s or 3.5%, whichever is greater
Overvoltage supv.:	0.02 to 3.000 pu in steps of 0.001
Overcurrent supv.:	0.000 to 30.000 pu in steps of 0.001
Pickup delay:	0 to 65.535 s in steps of 0.001
Reset delay:	0 to 65.535 s in steps of 0.001
Time accuracy:	±3% or ±4 ms, whichever is greater
95% settling time for	< 24 cycles
df/dt:	
Operate time:	10
at 2 × pickup:	
at 3 × pickup:	
at 5 × pickup:	
RESTRICTED GROUND F Pickup:	0.000 to 30.000 pu in steps of 0.001
Dropout:	97 to 98% of Pickup
Slope:	0 to 100% in steps of 1%
Pickup delay:	0 to 600.00 s in steps of 0.01
Dropout delay:	0 to 600.00 s in steps of 0.01
Operate time:	< 1power system cycle
SENSITIVE DIRECTIONA	L PÓWER
Measured power:	3-phase, true RMS
Number of stages:	2
Characteristic angle:	0 to 359° in steps of 1
Calibration angle:	0.00 to 0.95° in steps of 0.05
Minimum power:	-1.200 to 1.200 pu in steps of 0.001
Pickup level accuracy:	
Hysteresis:	2% or 0.001 pu, whichever is greater
Pickup delay:	0 to 600.00 s in steps of 0.01
Fime accuracy:	±3% or ±4 ms, whichever is greater 50 ms
Operate time: SPLIT PHASE PROTECTI	
Operating quantity:	split phast CT current biased by
	generator load current
Pickup level:	0.000 to 1.500 pu in steps of 0.001
Dropout level:	97 to 98% of pickup
level accuracy:	±0.5% of reading or ±1% of rated
Pickup delay:	0.000 to 65.535 s in steps of 0.001
Pickup delay: Time accuracy:	0.000 to 65.535 s in steps of 0.001 \pm 3% of \pm cycles, whichever is greater
Pickup delay: Fime accuracy: Operate time:	0.000 to 65.535 s in steps of 0.001
Pickup delay: Fime accuracy: Operate time: STATOR DIFFERENTIAL	0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz
Pickup delay: Fime accuracy: Operate time: STATOR DIFFERENTIAL Pickup:	0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01
Pickup delay: Fime accuracy: Operate time: STATOR DIFFERENTIAL Pickup: Slope 1/2:	0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 to 100% in steps of 1
Pickup delay: Fime accuracy: Operate time: STATOR DIFFERENTIAL Pickup:	0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01
Pickup delay: Fime accuracy: Dperate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: .evel accuracy:	0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 × pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01
Pickup delay: Time accuracy: Operate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: evel accuracy: SYNCHROCHECK	$\begin{array}{l} 0.000\ to\ 65.535\ sin\ steps\ of\ 0.001\\ \pm 3\%\ of\ zcycles,\ whichever is greater < 5\ cycles at\ 1.10\ x\ pickup\ at\ 60Hz\\ 0.050\ to\ 1.00\ pu\ in\ steps\ of\ 0.01\\ t\ o\ 100\%\ in\ steps\ of\ 1\\ 1.00\ to\ 1.50\ pu\ in\ steps\ of\ 0.01\\ 1.50\ to\ 30.00\ pu\ in\ steps\ of\ 0.01\\ \pm 2\% \end{array}$
Pickup delay: Time accuracy: Dperate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: Evel accuracy: BYNCHROCHECK Max voltage	0.000 to 65.535 s in steps of 0.001 $\pm 3\%$ of \pm cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01 1.50 to 30.00 pu in steps of 0.01
Pickup delay: Fime accuracy: Operate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: Evel accuracy: SYNCHROCHECK Max voltage Bifference:	0.000 to 65.535 in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01 ±2% 0 to 400000 V in steps of 1
Pickup delay: Time accuracy: Dperate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 1: Break 2: SYNCHROCHECK Max voltage difference: Max angle difference:	0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01 ±2% 0 to 400000 V in steps of 1 0 to 100° in steps of 1
Vickup delay: Fime accuracy: Operate time: STATOR DIFFERENTIAL Vickup: Slope 1/2: Sreak 1: Sreak 2: Evel accuracy: SYNCHROCHECK Max voltage difference: Max magle difference: Max freq. difference:	0.000 to 65.535 in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01 ±2% 0 to 400000 V in steps of 1 0 to 100° in steps of 1 0 to 100° in steps of 1 0.00 to 2.00 Hz in steps of 0.01
Pickup delay: Time accuracy: Dperate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: .evel accuracy: SYNCHROCHECK Max voltage Uifference: Max angle difference: Max freq. differen	0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01 ±2% 0 to 400000 V in steps of 1 0 to 100° in steps of 1
Pickup delay: Time accuracy: Operate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: Areak 2: Areak 2: SYNCHROCHECK Max voltage difference: Max freq, difference: Hysteresis for max. req, diff.:	0.000 to 65.535 in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01 ±2% 0 to 400000 V in steps of 1 0 to 100° in steps of 1 0 to 100° in steps of 1 0.00 to 2.00 Hz in steps of 0.01 0.00 to 0.10 Hz in steps of 0.01
Pickup delay: Time accuracy: Dperate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: .evel accuracy: SYNCHROCHECK Max voltage Uifference: Max angle difference: Max freq. differen	$\begin{array}{l} 0.000 \ \text{to} \ 65.535 \ \text{in steps of } 0.001 \\ \pm 3\% \ \text{of} \ \pm \text{cycles, whichever is greater} \\ < 5 \ \text{cycles at } 1.10 \ \text{x pickup at 60Hz} \\ \hline \\ 0.050 \ \text{to} \ 1.00 \ \text{pu in steps of } 0.01 \\ 1 \ \text{to} \ 100\% \ \text{in steps of } 1 \\ 1.00 \ \text{to} \ 1.50 \ \text{to} \ 30.00 \ \text{pu in steps of } 0.01 \\ \pm 2\% \\ \hline \\ 0 \ \text{to} \ 4000000 \ \text{V in steps of } 1 \\ 0 \ \text{to} \ 100^\circ \ \text{in steps of } 1 \\ 0 \ \text{to} \ 100^\circ \ \text{in steps of } 1 \\ 0.00 \ \text{to} \ 2.00 \ \text{Hz in steps of } 0.01 \\ 0.00 \ \text{to} \ 2.00 \ \text{Hz in steps of } 0.01 \\ 0.00 \ \text{to} \ 2.00 \ \text{Hz in steps of } 0.01 \\ \hline \\ \text{None, LV1 \ \& DV2, DV1 \ \& LV2, DV1 \ or } \end{array}$
Pickup delay: Time accuracy: Operate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: Areak 2: Areak 2: SYNCHROCHECK Max voltage difference: Max freq, difference: Hysteresis for max. req, diff.:	0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01 ±2% 0 to 400000 V in steps of 1 0 to 100° in steps of 1 0 to 100° in steps of 1 0.00 to 2.00 Hz in steps of 0.01 0.00 to 0.10 Hz in steps of 0.01 None, LV1 & DV2, DV1 & LV2, DV1 or DV2, DV1 xor DV2, DV1 & LV2, LV1 or DV2, DV1 xor DV2, DV1 & LV2, L = Live,
Pickup delay: Firme accuracy: Operate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: Evel accuracy: Evel accuracy: Evel accuracy: Max voltage Hifference: Max freq. difference: Max freq. difference:	0.000 to 65.535 in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01 ±2% 0 to 400000 V in steps of 1 0 to 100° in steps of 1 0 to 100° in steps of 1 0.00 to 2.00 Hz in steps of 0.01 0.00 to 0.10 Hz in steps of 0.01 None, LV1 & DV2, DV1 & LV2, DV1 or DV2, DV1 & DV2, DV1 & DV2 (L = Live, D = Dead)
Pickup delay: Time accuracy: Dperate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: .evel accuracy: SYNCHROCHECK Max voltage difference: Max angle difference: Max angle difference: Max angle difference: Max angle difference: Max angle difference: Max angle difference: Max angle difference: Dead source function: Freq. Slip Maximun dF:	0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01 ±2% 0 to 400000 V in steps of 1 0 to 100° in steps of 1 0 to 100° in steps of 1 0.00 to 2.00 Hz in steps of 0.01 None, LV1 & DV2, DV1 & DV2 (L = Live, D = Dead) 0.10 to 2.00 in steps of 0.01 Hz
Pickup delay: Firme accuracy: Operate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: Evel accuracy: Evel accuracy: Evel accuracy: Max voltage Hifference: Max freq. difference: Max freq. difference:	0.000 to 65.535 in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01 ±2% 0 to 400000 V in steps of 1 0 to 100° in steps of 1 0 to 100° in steps of 1 0.00 to 2.00 Hz in steps of 0.01 0.00 to 0.10 Hz in steps of 0.01 None, LV1 & DV2, DV1 & LV2, DV1 or DV2, DV1 & DV2, DV1 & DV2 (L = Live, D = Dead)

Thermal overload	Standard curve ElevCurve
curves:	Standard curve, FlexCurve, voltage dependent curve
	0.00 to 600.00 in steps of 0.01
Multiplier:	0.00 to 000.00 in steps of 0.01
Thermal Overload	pu = overload factor × FLA
Pickup:	
Overload (OF):	1.00 to 1.50 in steps of 0.001
Standard Overload	
Curve:	
trip time =	
T	0 x 2.2116623
1	pr 2 Imotor
$0.02530337 \times \left(\frac{I_{moti}}{OF \times F}\right)$	$\left(\frac{\text{SF}}{\text{FLA}}\right) + 0.05054758 \times \frac{\text{Motor}}{\text{OF} \times \text{FLA}}$
Motor Rated Voltage: Thermal Motor Biasing:	1 to 50000 V in steps of 1 Current unbalance, RTDs
Thermal Model Update Rate:	1 power cycle
Stopped/Running	1 to 65000 min. in steps of 1
Time Cool Constants:	
Stopped/Running	Exponential
Time Cool Constants	
Decay: Hot/Cold Safe Stall	0.01 to 1.00 in steps of 0.01
Ratio:	
Current Accuracy: Current Source:	Per phase current inputs True RMS
Timing Accuracy	\pm 100 ms or \pm 2% whichever is greate
Timing Accuracy for	\pm 100 ms or \pm 4%, whichever is greate
Voltage Dependent	
Overload:	
THIRD HARMONIC NEL Operating guantity:	JTRAL UNDERVOLTAGE
Undervoltage:	3rd harmonic of auxiliary undervoltag
Pickup level:	0.001 to 3.000 pu in steps of 0.001
Dropout level:	102 to 103% of pickup
Accuracy:	±2% of reading from 1 to 120V
Power:	0.000 to 1.000 out 1.000 for for
Pickup level:	0.000 to 1.200 pu in steps of 0.001
Dropout level: Accuracy:	97 to 98% of pickup ±5% or ±0.01 pu, whichever is greater
Undervoltage Inhibit	10.01 Pu, Whichever is greater
Level:	0.000 to 3.000 pu in steps of 0.001 pu
Accuracy:	±0.5% of reading from 10 to 208V
Pickup delay:	0 to 600.00 s in steps of 0.01
Time accuracy:	±3% or ±20 ms, whichever is greater
Operate time:	< 30 ms at 1.10 × pickup at 60 Hz
TRANSFORMER AGING	
Operating quantity:	computed aging accelaration fact (pu)
Pickup level:	1 to 10 pu in steps of 0.1
Pickup delay:	0 to 30000 min. in steps of 1
TRANSFORMER INSTAN	TANEOUS DIFFERENTIAL
Pickup level:	2.00 to 30.00 pu in steps of 0.01
Dropout level:	97 to 98% of pickup
Level accuracy:	±0.5% of reading or ±1% of rate (whichever is greater)
Operate time:	< 20 ms at 3 × pickup at 60 Hz
TRANSFORMER HOTTE	ST-SPOT TEMPERATURE
Operating quantity:	computed temperature in °C
Pickup level:	50 to 300°C in steps of 1
Dropout level: Bickup delay:	1°C below pickup 0 to 30000 min. in steps of 1
Pickup delay: TRANSFORMER LOSS (
Operating quantity:	computed accumulated transform
	loss of life, in hours
Pickup level:	0 to 500000 hours in steps of 1
TRANSFORMER PERCE	
Characteristic: Number of zones:	Differential Restraint pre-set
Minimum pickup:	2 0.05 to 1.00 pu in steps of 0.001
Slope 1 range:	15 to 100% in steps of 1%
Slope 2 range:	50 to 100% in steps of 1%
Kneepoint 1:	1.0 to 2.0 pu in steps of 0.0001
Kneepoint 2:	2.0 to 30.0 pu in steps of 0.0001
2nd harmonic inhibit	1.0 to 40.0% in steps of 0.1
level: 2nd harmonic inhibit	Adaptive, Traditional, Disabled
function:	
2nd harmonic inhibit	Per-phase, 2-out-of-3, Average
	1.0 to 40.0% in steps of 0.1
mode:	
mode: 5th harmonic inhibit range:	
mode: 5th harmonic inhibit range: Operate times:	
mode: 5th harmonic inhibit range: Operate times: Harmonic inhibits	20 to 30 ms
mode: 5th harmonic inhibit range: Operate times: Harmonic inhibits selected:	20 to 30 ms
mode: 5th harmonic inhibit range: Operate times: Harmonic inhibits selected: No harmonic inhibits	
mode: 5th harmonic inhibit range: Operate times: Harmonic inhibits selected:	20 to 30 ms

TRIP OUTPUT	
COLLECTS THID UND LECTOR	e input requests and issues outputs
control tripping and rec	
Communications timer delay:	
Evolving fault timer:	0.000 to 65.535 s in steps of 0.001
Timing accuracy:	±3% or 4 ms, whichever is greater
UNDERFREQUENCY	0.10 to 1.25 pu in store of 0.01
Minimum signal: Pickup level:	0.10 to 1.25 pu in steps of 0.01 20.00 to 65.00 Hz in steps of 0.01
Dropout level:	Pickup + 0.03 Hz
Level accuracy:	±0.01 Hz
Time delay: Timer accuracy:	0 to 65.535 s in steps of 0.001 ±3% or 4 ms, whichever is greater
VOLTS PER HERTZ	1070 of 4 ma, whichever is greater
Voltage:	Phasor only
Pickup level:	0.80 to 4.00 in steps of 0.01 pu V/F
Dropout level: Level accuracy:	97 to 98% of Pickup ±0.02 pu
Timing curves:	Definite Time; Inverse A, B, and
	Definite Time; Inverse A, B, and FlexCurves. A, B, C, and D
TD Multiplier:	0.05 to 600.00 s in steps of 0.01
Reset delay: Timing accuracy:	0.0 to 1000.0 s in steps of 0.1 ±3% or ± 4 ms (whichever is greate
VT FUSE FAIL	1070 of 1 4 mo (whichever is greate
Monitored parameters:	
WATTMETRIC ZERO-SE	
Measured Power Number of Elements:	Zero-Sequence 2
Characteristic Angle:	0 to 360° in steps of 1
Minimum Power:	0.001 to 1.20pu in steps of 0.001
Pickup Level Accuracy:	
Pickup Delay:	greater Definite time (0 to 600.00 s in step
	of 0.01), inverse time, or FlexCurve
Inverse Time Multiplier	
Time Accuracy: Operate Time:	±3% or ±8 ms, whichever is greate <30 ms at 60 Hz
operate rime.	30 113 02 00 112
MONITORING	
DATA LOGGER	1 + 10
Number of channels:	1 to 16
Parameters: Sampling rate:	Any available analog actual value 15 to 3600000 ms in steps of 1
Trigger:	Any FlexLogic operand
Mode:	Continuous or Triggered
Storage capacity: 1-second rate:	(NN is dependent on memory) 01 channel for NN days
1-second rule:	16 channels for NN days
60-minute rate:	01 channel for NN days
EVENT RECORDER	16 channels for NN days
Capacity:	1024 events
Time-tag:	to 1 microsecond
Triggers:	Any element pickup, dropout
	opérate Digital input change of sta
	Digital output change of ctate Se
	Ligital output change of state Sel
Data storage:	
FAULT LOCATOR	test events In non-volatile memory
FAULT LOCATOR Method:	test events In non-volatile memory Single-ended
FAULT LOCATOR	test events In non-volatile memory Single-ended Fault resistance is zero or fau
FAULT LOCATOR Method: Maximum accuracy if:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals au in phase
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a
FAULT LOCATOR Method: Maximum accuracy if:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu)
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals at in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data)
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals an in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) ZLine%error + (user data)
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals au in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) ZLine%error + (user data) METHOD%error + (Chapter 6)
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals at in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) ZLine%error + (user data) METHOD%error + (Chapter 6) RELAY ACCURACY%error + (1.5%)
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) ZLine%error + (user data) METHOD%error + (Chapter 6) RELAY ACCURACY%error + (1.5%) LT DETECTION (HIZ)
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUI Detections:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) ZLine%error + (user data) METHOD%error + (Chapter 6) RELAY ACCURACY%error + (1.5%) LT DETECTION (HIZ)
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUI Detections: OSCILLOGRAPHY	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) ZLine%error + (user data) METHOD%error + (Chapter 6) RELAY ACCURACY%error + (1.5%) LT DETECTION (HIZ) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUI Detections: OSCILLOGRAPHY Maximum records:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) ZLine%error + (user data) METHOD%error + (Chapter 6) RELAY ACCURACY%error + (1.5%) LT DETECTION (HL2) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUI Detections: OSCILLOGRAPHY Maximum records: Sampling rate:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals an in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) ZLine%error + (user data) METHOD%error + (Chapter 6) RELAY ACCURACY%error + (1.5%) IT DETECTION (HIZ) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 samples per power cycle
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUI Detections: OSCILLOGRAPHY Maximum records:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) ZLine%error + (user data) METHOD%error + (Chapter 6) RELAY ACCURACY%error + (1.5%) T DETECTION (HIZ) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 samples per power cycle Any element pickup, dropout of operate
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUI Detections: OSCILLOGRAPHY Maximum records: Sampling rate:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) ZLine%error + (loser data) METHOD%error + (Chapter 6) RELAY ACCURACY%error + (1.5%) IT DETECTION (HI2) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 samples per power cycle Any element pickup, dropout operate Digital input change of state
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUI Detections: OSCILLOGRAPHY Maximum records: Sampling rate:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) ZLine%error + (User data) METHOD%error + (Chapter 6) RELAY ACCURACY%error + (1.5%) LT DETECTION (HIZ) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 samples per power cycle Any element pickup, dropout of operate Digital input change of state
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUI Detections: OSCILLOGRAPHY Maximum records: Sampling rate:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) ZLine%error + (User data) METHOD%error + (Chapter 6) RELAY ACCURACY%error + (1.5%) LT DETECTION (HIZ) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 samples per power cycle Any element pickup, dropout of operate Digital input change of state Digital output change of state Digital output change of state Any FlexLogic Operand
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUI Detections: OSCILLOGRAPHY Maximum records: Sampling rate:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) ZLine%error + (user data) METHOD%error + (Chapter 6) RELAY ACCURACY%error + (1.5%) LT DETECTION (HIZ) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 samples per power cycle Any element pickup, dropout operate Digital input change of state Digital output change of state
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUI Detections: OSCILLOGRAPHY Maximum records: Sampling rate: Triggers:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) ZLine%error + (locapter 6) RELAY ACCURACY%error + (1.5%) IT DETECTION (HI2) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 samples per power cycle Any element pickup, dropout operate Digital input change of state Digital input change of state Digital output change of state Digital output change of state Digital output change of state Element state
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUI Detections: OSCILLOGRAPHY Maximum records: Sampling rate: Triggers:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) ZLine%error + (user data) ZLine%error + (user data) METHOD%error + (Chapter 6) RELAY ACCURACY%error + (1.5%) LT DETECTION (HIZ) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 samples per power cycle Any element pickup, dropout of operate Digital input change of state Digital output change of state Any FlexLogic Operand FlexLogic Equation AC input channels Element state Digital input state
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUI Detections: OSCILLOGRAPHY Maximum records: Sampling rate: Triggers: Data:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) METHOD%error + (Chapter 6) RELAY ACCURACY%error + (1.5%) LT DETECTION (HI2) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 samples per power cycle Any element pickup, dropout of operate Digital output change of state Digital output change of state Digital output change of state Digital output change of state Digital input change of state Digital input state Digital input state
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUI Detections: OSCILLOGRAPHY Maximum records: Sampling rate: Triggers: Data: Data:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) CT%error + (user data) METHOD&error + (Chapter 6) RELAY ACCURACY%error + (1.5%) LT DETECTION (HIZ) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 samples per power cycle Any element pickup, dropout operate Digital input change of state Digital output change of state Digital input change of state Digital input state Digital input state Digital output state
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUI Detections: OSCILLOGRAPHY Maximum records: Sampling rate: Triggers: Data:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) CT%error + (user data) METHOD&error + (Chapter 6) RELAY ACCURACY%error + (1.5%) LT DETECTION (HIZ) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 samples per power cycle Any element pickup, dropout operate Digital input change of state Digital output change of state Digital input change of state Digital input state Digital input state Digital output state
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: User-Case accuracy: HIGH-IMPEDANCE FAUI Detections: OSCILLOGRAPHY Maximum records: Sampling rate: Triggers: Data: Data storage: USER-PROGRAMMABLE Number of elements: Pre-fault trigger:	test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) ZLine%error + (user data) METHOD%error + (Chapter 6) RELAY ACCURACY%error + (1.5%) LT DETECTION (HIZ) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 samples per power cycle Any element pickup, dropout o operate Digital output change of state Digital output change of state Digital output change of state Element state Digital input state In non-volatile memory FAULT REPORT 2 any FlexLogic. operand
FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: Worst-case accuracy: User-IMPEDANCE FAUI Detections: OSCILLOGRAPHY Maximum records: Sampling rate: Triggers: Data storage: USER-PROGRAMMABLE Number of elements:	In non-volatile memory Single-ended Fault resistance is zero or fau- currents from all line terminals an in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) ZLine%error + (user data) ZLine%error + (loser data) METHDD%error + (Chapter 6) RELAY ACCURACY%error + (1.5%) LT DETECTION (HIZ) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 samples per power cycle Any element pickup, dropout of operate Digital output change of state Digital output change of state Digital input state Element state Digital input state Digital input state In on-volotile memory FAULT REPORT

1 to 50000 A

symmetrical

50.0 to 240.0 V 1.00 to 24000.00

< 0.25 VA at 120 V

to 275 V

1 A or 5 A by connection 20 to 65 Hz

< 0.2 VA at rated secondary

0.02 to 46 × CT rating RMS

0.002 to 4.6 × CT rating RMS symmetrical 20 ms at 250 times rated 1 sec. at 100 times rated

continuous at 3 times rated

continuous 4x10 times rated with 24 CT inputs have a maximum operating temp. of 50°C

20 to 65 Hz For the L90, the nominal system frequency should be chosen as 50 Hz or 60 Hz only.

UR Technical Specifications

MONITORING PHASOR MEASUREMENT UNIT

Output format: Number of channels:	per IEEE C37.118 standard 14 synchrophasors, 16 analogs, 16 digitals
TVE (total vector error): Triggering:	
Reporting rate:	1, 2, 5, 10, 12, 15, 20, 25, 30, 50, 60 or 120 times per second
Number of clients:	One over TCP/IP port, two over UDP/ IP ports
TAC ranges:	As indicated in appropriate specifications sections
Network reporting format: Network reporting style:	Ja-bit integer or 32-bit IEEE floating point numbers Rectangular (real and imaginary) or polar (magnitude and angle) coordinates
Filtering: Calibration:	P and M class Angle ±5°, magnitude +/-5% per phase
Compensation:	-180 to 180° in steps of 30° (current and voltage components)
Mode of operation: PMU Recording:	Normal and test 46 configurable channels (14 syncrophasor, 16 digital, 16 analogs)
METERING	

RMS CURRENT: PHASE, NEUTRAL, AND GROUND

Accuracy at:	
0.1 to 2.0 × CT rating:	±0.25% of reading or ±0.1% of rated
> 2.0 × CT rating:	(whichever is greater) ±1.0% of reading
RMS VOLTAGE	
Accuracy:	±0.5% of reading from 10 to 208 V
REAL POWER (WATTS)	, and the second s
Accuracy:	±1.0% of reading at -0.8 < PF < -1.0 and 0.8 < PF < 1.0
DEACTIVE DOWED WAR	9

EACTIVE POWER (VARS) +1 0% of reading at -0.2 < PF < 0.2

Accuracy:	$\pm 1.0\%$ of reading at -0.2 < PF < 0.2
APPARENT POWER (VA)	
Accuracy:	±1.0% of reading
WATT-HOURS (POSITIVI	
Accuracy:	±2.0% of reading
Range:	±0 to 2 × 109 MWh
Parameters:	3-phase only
Update rate:	50 ms
VAR-HOURS (POSITIVE /	
Accuracy:	±2.0% of reading
Range:	±0 to 2 × 109 Mvarh
Parameters:	3-phase only
Update rate:	50 ms
CURRENT HARMONICS	
Harmonics:	2nd to 25th harmonic: per phase,
	displayed as a % of f1 (fundamental
	frequency phasor) THD: per phase, displayed as a % of f1
	displayed as a % of f1
Accuracy:	
Harmonics:	1. f1 > 0.4pu: (0.20% + 0.035% /
	harmonic) of reading or 0.15% of
	100%, whichever is greater
	2. f1 < 0.4pu: as above plus %error
TUD	of f1
THD:	1. f1 > 0.4pu: (0.25% + 0.035% /
	harmonic) of reading or 0.20% of
	100%, whichever is greater
	2. f1 < 0.4pu: as above plus %error of f1
DEMAND	0111
Measurements:	Phases A, B, and C present and
neusurements.	maximum measured currents
	3-Phase Power (P, Q, and S) present
	and maximum measured currents
Accuracy:	±2.0%
FREQUENCY	12.070
Accuracy at	±0.01 Hz (when voltage signal is used
$V = 0.9 \pm 0.12$ mm	
	for frequency measurement)
V = 0.8 to 1.2 pu: I = 0.1 to 0.25 pu:	for frequency measurement) +0.05 Hz
I = 0.1 to 0.25 pu:	±0.05 Hz
	±0.05 Hz ±0.02 Hz (when current signal is used
l = 0.1 to 0.25 pu: l > 0.25 pu:	±0.05 Hz
I = 0.1 to 0.25 pu:	±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement)
I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS	±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase,
I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS	±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % of f1 (fundamental
I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS	±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % of f1 (fundamental
I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS	±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase,
I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics:	±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % of f1 (fundamental
I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics: Accuracy:	 ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % of f1 (fundamental frequency phasor) THD: per phase, displayed as a % of f1 1. f1 > 0.4pu: (0.20% + 0.035% / harmonic) of reading or 0.15% of
I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics: Accuracy:	±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % of f1 (fundamental frequency phasor) THD: per phase, displayed as a % of f1 1. f1 > 0.4pu: (0.20% + 0.035% / harmonic) of reading or 0.15% of 100%, whichever is greater
I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics: Accuracy:	±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % of f1 (fundamental frequency phasor) THD: per phase, displayed as a % of f1 1. f1 > 0.4pu: (0.20% + 0.035% / harmonic) of reading or 0.15% of 100%, whichever is greater 2. f1 < 0.4pu: cs above plus %error
I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics: Accuracy: Harmonics:	 ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % of f1 (fundamental frequency phasor) THD: per phase, displayed as a % of f1 1. f1 > 0.4pu: (0.20% + 0.035% / harmonic) of reading or 0.15% of 100%, whichever is greater 2. f1 < 0.4pu: as above plus %error of f1
I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics: Accuracy:	±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % of f1 (fundamental frequency phasor) THD: per phase, displayed as a % of f1 1. f1 > 0.4pu: (0.20% + 0.035% / harmonic) of reading or 0.15% of 100%, whichever is greater 2. f1 < 0.4pu: (0.25% + 0.035% / 1.1 + 0.4pu: (0.25% + 0.035% / 1.1 + 1.1 + 0.4pu: (0.25% + 0.035% / 1.1 + 0.4pu: (0.25\% + 0.035% / 1.1 + 0.4pu: (0.25\% + 0.035)
I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics: Accuracy: Harmonics:	 ±0.05 H₂ ±0.02 H₂ (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % of f1 (fundamental frequency phasor) THD: per phase, displayed as a % of f1 1. f1 > 0.4pu: (0.20% + 0.035% / harmonic) of reading or 0.15% of 100%, whichever is greater 2. f1 < 0.4pu: as above plus %error of f1 1. f1 > 0.4pu: (0.25% + 0.035% / harmonic) of reading or 0.20% of
I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics: Accuracy: Harmonics:	 ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % of f1 (fundamental frequency phasor) THD: per phase, displayed as a % of f1 1. f1 > 0.4pu: (0.20% + 0.035% / harmonic) of reading or 0.15% of 100%, whichever is greater 2. f1 < 0.4pu: (0.25% + 0.035% / harmonic) of reading or 0.25% / harmonic) of 1. 1. f1 > 0.4pu: (0.25% + 0.035% / harmonic) of reading or 0.20% of 100%, whichever is greater
I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics: Accuracy: Harmonics:	 ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % of f1 (fundamental frequency phasor) THD: per phase, displayed as a % of f1 1. f1 > 0.4pu: (0.20% + 0.035% / harmonic) of reading or 0.15% of 100%, whichever is greater 2. f1 < 0.4pu: (0.25% + 0.035% / harmonic) of reading or 0.20% of 100%, whichever is greater 2. f1 < 0.4pu: (0.25% + 0.035% / harmonic) of reading or 0.20% of 100%, whichever is greater 2. f1 < 0.4pu: (0.25% + 0.035% / harmonic) of reading or 0.20% of 100%, whichever is greater 2. f1 < 0.4pu: cs above plus %error
I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics: Accuracy: Harmonics:	 ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % of f1 (fundamental frequency phasor) THD: per phase, displayed as a % of f1 1. f1 > 0.4pu: (0.20% + 0.035% / harmonic) of reading or 0.15% of 100%, whichever is greater 2. f1 < 0.4pu: (0.25% + 0.035% / harmonic) of reading or 0.25% / harmonic) of 1. 1. f1 > 0.4pu: (0.25% + 0.035% / harmonic) of reading or 0.20% of 100%, whichever is greater
I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics: Accuracy: Harmonics:	 ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % of f1 (fundamental frequency phasor) THD: per phase, displayed as a % of f1 1. f1 > 0.4pu: (0.20% + 0.035% / harmonic) of reading or 0.15% of 100%, whichever is greater 2. f1 < 0.4pu: (0.25% + 0.035% / harmonic) of reading or 0.20% of 100%, whichever is greater 2. f1 < 0.4pu: (0.25% + 0.035% / harmonic) of reading or 0.20% of 100%, whichever is greater 2. f1 < 0.4pu: (0.25% + 0.035% / harmonic) of reading or 0.20% of 100%, whichever is greater 2. f1 < 0.4pu: cs above plus %error

LISER-PROGRAMMARI E ELEMENTS CONTROL PUSHBUTTONS Number of pushbuttons: Operation: FLEXCURVES Number: 4 (A through D) 40 (0 through 1 of pickup) 80 (1 through 20 of pickup) 0 to 65535 ms in steps of 1 Reset points: Operate points: Time delay: FLEXLOGIC Reverse Polish Notation with graphical visualization (keypad Programming language: programmable) Lines of code: Internal variables 1024 Supported operations: AND (2 Detectors Timers Inputs: Number of timers 32 Pickup delay: Dropout delay: steps of 1 FLEXELEMENTS Number of elements: 8 or 16 Operating signal: Operating signal mode: Operating mode: Comparator direction: Pickup Level: Hvsteresis: Delta dt: Pickup & dropout delay: 0.001 **FLEXSTATES** Number: Programmability: virtual input LED TEST from any digital input or user-programmable condition Initiation Number of tests Duration of full test: Test sequence 1: all LEDs on Test sequence 2 Test sequence 3: off for 1 s NON-VOLATILE LATCHES

Number: Output: Execution sequence:

Type:

SELECTOR SWITCH Number of elements Upper position limit:

Selecting mode: Time-out timer: Control inputs: Power-up mode: USER-DEFINABLE DISPLAYS

Number of displays: Lines of display:

```
Parameters:
Invoking and scrolling:
```

USER-PROGRAMMABLE LEDS Number:

Programmability:

Reset mode: Self-reset or Latched USER-PROGRAMMABLE PUSHBUTTONS (OPTIONAL) Number of pushbuttons: Mode:

Display message: 8-BIT SWITCH Number of elements: Input signals: Control

Response time:

3 (standard), 16 (UR Enhanced HMI) or 8 plus 10 soft pushbuttons (UR color HMI) drive FlexLogic. operands

NOT. XOR. OR (2 to 16 inputs).

to 16 inputs), NOR (2 to 16 inputs), NAND (2 to 16 inputs), Latch (Reset Dominant), Edge any logical variable, contact, or virtual input

0 to 60000 (ms, sec., min.) in steps of 1 0 to 60000 (ms, sec., min.) in

any analog actual value, or two values in Differential mode Signed or Absolute Value Level, Delta Over, Under -30.000 to 30.000 pu in steps of 0.001 0.1 to 50.0% in steps of 0.1 20 ms to 60 days 0.000 to 65.535 s in steps of

up to 256 logical variables grouped under 16 Modbus addresses any logical variable, contact, or

3, interruptible at any time approximately 3 minutes all LEDs off, one LED at a time on for 1 s all LEDs on, one LED at a time

Set-dominant or Resetdominant 16 (individually programmed) Stored in non-volatile memory As input prior to protection, control, and FlexLogic.

to 7 in steps of 1 Time-out or Acknowledge 3.0 to 60.0 s in steps of 0.1 step-up and 3-bit restore from non-volatile memory or synchronize to a 3-bit control input 2 × 20 alphanumeric characters up to 5, any Modbus register addresses keypad, or any user-programmable condition, including pushbuttons 48 plus Trip and Alarm (UR

Alarm (UR Color HMI) from any logical variable, contact, or virtual input 13 (standard), 16 (UR Enhanced HMI) or 8 plus 10 soft pushbuttons (UR color HMI) Self-Reset, Latched 2 lines of 20 characters each

two 8-bit integers via FlexLogic operands any FlexLogic operand < 8 ms at 60 Hz, < 10 ms at 50 Hz

GEGridSolutions.com

AC CURRENT	
CT rated primary:	1 to 50000
CT rated secondary:	1 A or 5 A b
Nominal frequency:	20 to 65 Hz
Relay burden:	< 0.2 VA at
Conversion range:	
Standard CT:	0.02 to 46 ×
	symmetrico
Sensitive Ground/HI-Z	CT module:
	0.002 to 4.6
	symmetrico
Current withstand:	20 ms at 25
	1 sec. at 10
	continuous
	continuous

INPUTS

AC VOLTAGE VT rated secondary: VT ratio:

Nominal frequency: Relay burden:

Conversion range: Voltage withstand:

CONTACT INPUTS

Dry contacts: Wet contacts: Selectable thresholds. Tolerance: Contacts Per Common Return: Recognition time: Debounce timer: Continuous Current

Dry contacts Wet contacts: Selectable thresholds: Tolerance: Contacts Per Common Return: Recognition time: Debounce timer: **Continuous Current** Draw: Auto-Burnish Impulse 50 to 70 mA Current: Duration of Auto-Burnish Impulse: DCMA INPUTS Current input (mA DC): Input impedance: Conversion range: Accuracy: Type: DIRECT INPUTS Number of input points: No. of remote devices: Default states on loss of comms.: Ring configuration: Data rate: CRC CRC alarm: Responding to: Monitoring message count: Alarm threshold Unreturned message Responding to: Monitoring message count: Alarm threshold: IRIG-B INPUT Amplitude modulation: DC shift: Input impedance: Isolation REMOTE INPUTS (IEC 61850 GSSE) Number of input points: Number of remote devices:

Default states on loss of comms.: RTD INPUTS Types (3-wire): Sensing current: Range: Accuracy:

Isolation

 1000Ω maximum 300 V DC maximum 17 V, 33 V, 84 V, 166 V ±10% < 1 ms 0.0 to 16.0 ms in steps of 0.5 3mA (when energized) Draw: CONTACT INPUTS WITH AUTO-BURNISHING 1000Ω maximum 300 V DC maximum 17 V, 33 V, 84 V, 166 V ±10% 2

continuous at 260 V to neutral

L min./hr at 420 V to neutra

< 1 ms 0.0 to 16.0 ms in steps of 0.5 3mA (when energized

25 to 50 ms

0 to -1, 0 to +1, -1 to +1, 0 to 5, 0 to 10, 0 to 20, 4 to 20 (programmable) 379 ±10% -1 to + 20 mA DC ±0.2% of full scale Passive

32 16

On. Off. Latest/Off. Latest/On

Yes, No 64 or 128 kbps 32-bit

Rate of messages failing the CRC 10 to 10000 in steps of 1

1 to 1000 in steps of 1 alarm: Rate of unreturned messages in the ring configuration 10 to 10000 in steps of 1

1 to 1000 in steps of 1

1 to 10 V pk-pk

22 kW 2 kV

32, configured from 64 incoming bit

pairs 16

On. Off. Latest/Off. Latest/On

100 Ω Platinum, 100 Ω & 120 Ω Nickel, 10 Ω Copper 5 mA -50 to +250°C ±2-C 36 V pk-pk

UR Technical Specifications

OUTPUTS					
OUTPUTS CONTROL P	OWER EXT	ERNAL	OUTPUT		
(FOR DRY CO	ONTACT IN			/10 1	DC
Capacity: Isolation:	UTC		0 mA DC at 00 Vpk	48 V	UC
DCMA OUTF Range:	2015	-1	to 1 mA 0 to	o 1 r	nA /i to 20 mA
Max. load re	esistance:	12	k for -1 to 1	. mA	nA, 4 to 20 mA range
		12	k for 0 to 1	mΑ	range
Accuracy:		60	0 for 4 to 20	mA	runge
. ioourdey.				-sca	le for 0 to 1 mA
			ige	1	. f 1 + . 1
			.5% 01 1011-5 1ge	scale	e for -1 to 1 mA
		±0	.75% of full-	sca	le for 0 to 20 mA
99% Settlin	a time to i	rar n 10	nge Dims		
step change		u 10	5 1115		
Isolation:			kV		
Driving sign Upper & low	iai: /er limit fa	an or -90	y FlexAnalog) to 90 pu in		
the driving	signal:				
Output poin		32			
FORM-A CU	RRENT MC				
Threshold c	urrent:		prox. 80 to 1	100 i	mA
FORM-A REL Make & carr		30	A as per AN	ISI C	37.90
Carry contin		. 50 67		510	51.50
Break at L/F	R of 40 ms		DC max. at		
			A DC max. A DC max.		
•		0.2	A DC max.	at 2	50 V
Operate tim Contact ma			er alloy		
FORM-A VO		NITOR	,		
Applicable v Trickle curre	oltage:	ap	prox. 15 to 2	250	/ DC
Trickle curre	ent:	ap	prox. 1 to 2.	5 111/	4
INPUT VC	DLTAGE			EDAN	
250 V	DC	2W	RESISTOR 20 K		1W RESISTOR 50K
120 V			5 K		2 K
48 V			2 K		2 K
24 V	DC		2 K		2 K
FORM-C AN Make & carr					
Make & carı Carry contir Break at L/F	ry for 0.2 s nuous: R of 40 ms	8 A 8 A 2 0.2 0.1	A	. at . at	48 V 125 V
Make & carr Carry contin Break at L/F Operate tim Contact ma	ry for 0.2 s nuous: R of 40 ms ne: terial:	30 8 A 8 A : 0.2 0.1 < 8	A 5 A DC max 0 A DC max	. at . at	48 V 125 V
Make & carr Carry contin Break at L/F Operate tim Contact ma FAST FORM-	ry for 0.2 s nuous: R of 40 ms ne: terial: -C RELAY	8 / 8 / 0.2 0.1 < 8 Silv	A 5 A DC max 0 A DC max 5 ms ver alloy	. at	125 V
Make & carr Carry contin Break at L/F Operate tim Contact ma	ry for 0.2 s nuous: R of 40 ms ne: terial: -C RELAY ry:	8 / 8 / 0.2 0.1 < 8 Silv	A 5 A DC max 0 A DC max 5 ms	. at	125 V
Make & carr Carry contin Break at L/F Operate tim Contact ma FAST FORM- Make & carr Minimum lo Operate tim	ry for 0.2 s nuous: R of 40 ms ne: terial: -C RELAY ry: ad impedene:	s: 30 8 / 0.2 0.1 < 8 Silv 0.1 ance: < 0	A 5 A DC max 0 A DC max 3 ms yer alloy . A max. (res 0.6 ms	. at	125 V
Make & carr Carry contin Break at L/F Operate tim Contact ma FAST FORM- Make & carr Minimum lo	ry for 0.2 s nuous: R of 40 ms ne: terial: -C RELAY ry: ad impedene:	s: 30 8 / 0.2 0.1 < 8 Silv 0.1 ance: < 0	A 5 A DC max 0 A DC max ms ver alloy . A max. (res	. at	125 V
Make & carr Carry contin Break at L/F Operate tim Contact ma FAST FORM- Make & carr Minimum lo Operate tim Internal Lim Resistor: IRIG-B OUTF	ry for 0.2 s nuous: R of 40 ms ne: terial: -C RELAY ry: ad impede ne: niting	:: 30 8 / : 0.2 0.1 < 8 Silv 0.1 0.1 ance: < 0 10	A 5 A DC max 0 A DC max rer alloy A max. (res 0.6 ms 0, 2	istiv	125 V e load)
Make & carr Carry contin Break at L/F Operate tim Contact ma FAST FORM- Make & carr Minimum Io Operate tim Internal Lim Resistor: IRIG-B OUTF Amplitude:	ry for 0.2 s nuous: R of 40 ms terial: -C RELAY ry: ad impedence: niting	:: 30 8 / : 0.2 0.1 < 8 Silv 0.1 0.1 0.1 0.1 10	A 5 A DC max 0 A DC max 3 ms yer alloy . A max. (res 0.6 ms	istiv	125 V e load)
Make & carr Carry contin Break at L/F Operate tim Contact ma FAST FORM- Make & carr Minimum lo Operate tim Internal Lim Resistor: IRIG-B OUTF	ry for 0.2 s nuous: R of 40 ms terial: -C RELAY ry: ad impedence: niting	:: 30 8 / : 0.2 0.1 < & Silv 0.1 ance: < C 10 10 10	A 5 A DC max 0 A DC max rer alloy . A max. (res 0.6 ms 0, 2 V peak-pea 0 ohms ns for AM in	istiv k RS	125 V e load) 485 level
Make & carri Carry contin Break at L/F Operate tim Contact ma FAST FORM- Make & carr Minimum lo Operate tim Internal Lim Resistor: IRIG-B OUTF Amplitude: Maximum la Time delay:	ry for 0.2 s nuous: R of 40 ms terial: -C RELAY ry: ad impedence: niting	:: 30 8 / : 0.2 0.1 < & Silv 0.1 ance: < C 10 10 10 10 10	A 5 A DC max 0 A DC max rer alloy . A max. (res 0.6 ms 0, 2 V peak-pea 0 ohms ns for AM in µs for DC-sl	istiv k RS	e load) 485 level
Make & carr Carry contin Break at L/F Operate tim Contact ma FAST FORM- Make & carr Minimum lo Operate tim Internal Lim Resistor: IRIG-B OUTT Amplitude: Maximum la	ry for 0.2 s nuous: R of 40 ms he: terial: -C RELAY ry: ad impede te: iiting PUT bad:	:: 30 8 / : 0.2 0.1 < & Silv 0.1 ance: < C 10 10 10	A 5 A DC max 0 A DC max rer alloy . A max. (res 0.6 ms 0, 2 V peak-pea 0 ohms ns for AM in µs for DC-sl	istiv k RS	e load) 485 level
Make & carr Carry contin Break at L/F Operate tim Contact ma FAST FORM- Make & carr Minimum lo Operate tim Internal Lim Resistor: IRIG-B OUTF Amplitude: Time delay: Isolation: LATCHING F Make & carr	ry for 0.2 s nuous: R of 40 ms he: terial: -C RELAY ry: ad impedence: hiting PUT Put RELAY ry for 0.2 s	5: 30 8 / 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	A 5 A DC max 0 A DC max err alloy A max. (results 1.6 ms 0, 2 V peak-pea 0 ohms ns for AM in up for DC-si V A as per AN	: at istiv k RS put hift i	125 V e load) 485 level nput
Make & carr Carry contin Break at L/F Operate tim Contact ma FAST FORM- Make & carr Minimum lo Operate tim Internal Lim Resistor: IRIG-B OUTT Amplitude: Maximum k Time delay: Isolation: LATCHING F Make & carr Carry contir	ry for 0.2 s nuous: R of 40 ms e: terial: -C RELAY ry: ad impede e: niting PUT pad: RELAY ry for 0.2 s nuous:	:: 30 8 / 2 0.2 0.1 2 0.2 0.1 2 0.1 3 0.1 0 0.1 0 0.1 10 10 10 10 10 10 10 2 k : 30 6 /	A 5 A DC max 0 A DC max ims ims ims ims A max. (res 1.6 ms 0, 2 V peak-pea 0 ohms ns for AM in up for DC-si V A as per AN	k RS put hift i	125 V e load) 485 level nput
Make & carr Carry contin Break at L/F Operate tim Contact ma FAST FORM- Make & carr Make & carr Make & carr IRIG-B OUTF Amplitude: Isolation: LATCHING F Make & carr Carry contin Break at L/F Operate tim	y for 0.2 s nuous: R of 40 ms ee: terial: -C RELAY y: ad impede e: iiting PUT bad: RELAY y for 0.2 s nuous: R of 40 ms e:	:: 30 8 / 2 0.2 0.1 3 0.2 0.1 3 0.2 0.1 3 0.2 0.1 10 10 10 10 10 10 10 10 10 10 2 k 2 k 2 k 2 c 2 c 2 c 2 c 2 c 2 c 2 c 2 c 2 c 2 c	A 5 A DC max o A DC max ms ver alloy A max. (res 6.6 ms 0, 2 V peak-pea 0 ohms ns for AM in µs for DC-si V A as per AN 5 A DC max ms	k RS put hift i	125 V e load) 485 level nput
Make & carr Carry contin Break at L/F Operate tim Contact ma FAST FORM- Make & carr Minimum lo Operate tim Internal Lim Resistor: IRIG-B OUTT Amplitude: Maximum lc Time delay: Isolation: LATCHING F Make & carr Carry contin Break at L/F Operate tim Contact ma	y for 0.2 s nuous: R of 40 ms ee: terial: -C RELAY y: ad impede e: iiting PUT bad: RELAY y for 0.2 s nuous: R of 40 ms e:	:: 30 8 / 2 0.1 3 0.2 0.1 3 0.2 0.1 3 0.2 3 0.1 10 10 10 10 10 10 10 10 10 10 10 10 2 k 5 : 30 6 / 2 k : 30 2 k 2 k : 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A 5 A DC max o A DC max irms ver alloy A max. (res 16 ms 0, 2 V peak-pea 0 ohms ns for AM in µs for DC-si V A as per AN 5 A DC max ims 5 A DC max	k RS put SI C	125 V e load) 485 level nput 37.90
Make & carr Carry contin Break at L/F Operate tim Contact ma FAST FORM- Make & carr Make & carr Make & carr IRIG-B OUTF Amplitude: Isolation: LATCHING F Make & carr Carry contin Break at L/F Operate tim	ry for 0.2 s nuous: R of 40 ms terial: -C RELAY 'y: ad impedue: niting PUT pad: RELAY ry for 0.2 s nuous: R of 40 ms terial:	:: 30 8 / 0.1 8 / 0.1 8 / 8 / 10 10 10 10 10 10 10 10 10 10 10 10 10	A 5 A DC max o A DC max rms ver alloy A max. (res 6 ms 0, 2 V peak-pea 0 ohms ns for AM in µs for DC-si V A as per AN 5 A DC max rms ver alloy boarate oper erate-domi	k RS put hift i ste c	125 V e load) 485 level nput 37.90 and reset inputs
Make & carr Carry contir Break at L/F Operate tim Contact ma FAST FORM- Make & carr Minimum lo Operate tim Internal Lim Resistor: IRIG-B OUTF Amplitude: Maximum la Time delay: Isolation: LATCHING F Make & carr Carry contir Break at L/F Operate tim Contact ma Control: Control more	ry for 0.2 s nuous: R of 40 ms terial: -C RELAY ry: ad impede te: niting PUT Put RELAY ry for 0.2 s nuous: R of 40 ms terial: de:	:: 30 8 A A C A C A C A C A C A C A C A C A C	A 5 A DC max 0 A DC max ims ver alloy A max. (res 1.6 ms 0, 2 V peak-pea 0 ohms on for AM in ups for DC-si V A as per AN 5 A DC max ver alloy oprate operar erate-dominiant	k RS put hift i ste c	125 V e load) 485 level nput 37.90
Make & carr Carry contin Break at L/F Operate tim Contact ma FAST FORM- Make & carr Make & carr Make & carr IRIG-B OUTF Amplitude: Isolation: LATCHING F Make & carr Carry contin Break at L/F Operate tim Contact ma Control: Control mod	ry for 0.2 s nuous: a of 40 ms terial: -C RELAY y: ad impedue: niting PUT Dad: RELAY ry for 0.2 s nuous: R of 40 ms terial: terial: terial: terial: ce: terial: terial: ce: terial	∷ 30 ∴ 30 ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴ 10 10 10 10 10 10 10 ∴ ∴ ∴ ∴ ∴	A 5 A DC max 0 A DC max ims ver alloy A max. (res 1.6 ms 0, 2 V peak-pea 0 ohms on for AM in ups for DC-si V A as per AN 5 A DC max ver alloy oprate operar erate-dominiant	k RS put hift i ste c	125 V e load) 485 level nput 37.90
Make & carr Carry contin Break at L/F Operate tim Contact ma FAST FORM- Make & carr Minimum lo Operate tim Internal Lim Resistor: IRIG-B OUTF Amplitude: Isolation: LATCHING F Make & carr Carry contin Break at L/F Operate tim Control: Control mod REMOTE OU Standard ou User output	ry for 0.2 s nuous: R of 40 ms he: terial: -C RELAY 'y: ad impedue: niting PUT bad: RELAY ry for 0.2 s nuous: R of 40 ms le: terial: de: TPUTS (IEC trutput poin ; points:	:: 30 :: 0.2.3 :: 0.1.1 :: 0.1.1 :: : : <td:< td=""> <td:< td=""> <th>A 5 A DC max 0 A DC max ims ver alloy A max. (res 1.6 ms 0, 2 V peak-pea 0 ohms on for AM in ups for DC-si V A as per AN 5 A DC max ver alloy oprate operar erate-dominiant</th><th>k RS put hift i ste c</th><th>125 V e load) 485 level nput 37.90</th></td:<></td:<>	A 5 A DC max 0 A DC max ims ver alloy A max. (res 1.6 ms 0, 2 V peak-pea 0 ohms on for AM in ups for DC-si V A as per AN 5 A DC max ver alloy oprate operar erate-dominiant	k RS put hift i ste c	125 V e load) 485 level nput 37.90
Make & carr Carry contin Break at L/F Operate tim Contact ma FAST FORM- Make & carr Minimum lo Operate tim Internal Lim RIG-B OUTT Amplitude: Isolation: LATCHING F Make & carr Carry contin Break at L/F Operate tim Contract ma Control: Control moor REMOTE OU Standard ou User output SoLID-STAT	ry for 0.2 s huous: R of 40 ms re: terial: -C RELAY ry: ad impedue: hiting PUT bad: RELAY ry for 0.2 s huous: R of 40 ms re: terial: de: TPUTS (IEC tiput points: points: E 0UTPUTS E 0UTPUTS	:: 30 / a :: 0.2.3 :: 0.2.4 :: 0.1 :: 0.1 :: 0.1 :: 10 :: 10 :: 0.2 k :: 30 :: 0.2 k :: 30 :: 0.1 :: 0.1 :: 0.2 k :: 30 :: 0.2 k :: 30 :: 0.2 k :: 30 :: 30 :: 30 :: 30 :: 30 :: 30 :: 30 :: 30 :: 30 :: 30 :: 30 :: 30 :: 30 :: 30 :: 30	A 5 A DC max 0 A DC max rms ver alloy A max. (res 6 ms 0, 2 V peak-pea 0 ohms ns for AM in µs for DC-si V A as per AN 5 A DC max ms ver alloy 5 A DC max ms rer alloy 5 A DC max ms rer alloy 0 obsets 5 A DC max ns 5 A DC max ns 5 A DC max 0 ohms 5 A DC max N 5 A DC max N S DC ma	k RS put hift i ste c	125 V e load) 485 level nput 37.90
Make & carr Carry contin Break at L/F Operate tim Contact ma FAST FORM- Make & carr Make & carr Make & carr IRIG-B OUTF Amplitude: Isolation: LATCHING F Make & carr Carry contin Break at L/F Operate tim Control: Control mod Standard ou User output SOLID-STAT Operate & fr	ry for 0.2 s nuous: a of 40 ms re: terial: -C RELAY y: ad impedue: niting PUT pad: RELAY y for 0.2 s nuous: R of 40 ms re: terial: de: ITPUTS (IEC utput poin : points: E OUTPUT elease tim oltage:	:: 30 8 9 10 10 10 10 10 10 10 10 10 10	A 5 A DC max 5 A DC max ims ver alloy A max. (res 6 ms 0, 2 V peak-pea 0 ohms ns for AM in µs for DC-si V A as per AN 5 A DC max ms ver alloy 0 oracte operate- data operate- 0 miniant 0 GSSE 00 µs 5 V DC	k RS put ISI C ate c in an	125 V e load) 485 level nput 37.90 and reset inputs t or reset-
Make & carr Carry contin Break at L/F Operate tim Contact ma FAST FORM- Make & carr Minimum lo Operate tim Internal Lim Resistor: IRIG-B OUTT Amplitude: Maximum ka Time delay: Isolation: LATCHING F Make & carr Carry contin Break at L/F Operate tim Contact ma Control: Control moor Standard ou User output SoLID-STAT Operate & r Maximum v Cotaximum v	ry for 0.2 s nuous: a of 40 ms re: terial: -C RELAY y: ad impedue: niting PUT pad: RELAY y for 0.2 s nuous: R of 40 ms re: terial: de: ITPUTS (IEC utput poin : points: E OUTPUT elease tim oltage:	:: 30 8 9 10 10 10 10 10 10 10 10 10 10	A 5 A DC max 0 A DC max ims ver alloy A max. (res 1.6 ms 0, 2 V peak-pea 0 ohms on for AM in ups for DC-si V A as per AN 5 A DC max ver alloy oparate operar erate-dominiant 0 GSSE)	k RS put ISI C ate c in an	125 V e load) 485 level nput 37.90 and reset inputs t or reset-
Make & carr Carry contin Break at L/F Operate tim Contact ma FAST FORM- Make & carr Minimum lo Operate tim Internal Lim Resistor: IRIG-B OUTF Amplitude: Maximum la Time delay: Isolation: LATCHING F Make & carr Carry contin Break at L/F Operate tim Control: Control mod Standard ou User output SOLID-STAT Operate & r Maximum v Maximum v Maximum v	ry for 0.2 s nuous: R of 40 ms he: terial: -C RELAY 'y: ad impedue: niting PUT had: RELAY ry for 0.2 s nuous: R of 40 ms he: terial: de: ITPUTS (IE terial: de: ITPUTS (IE elease tim oltage: ontinuous	:: 30 00 8 / 20 3 / 20	A 5 A DC max 5 A DC max ims ver alloy A max. (res 1.6 ms 0, 2 V peak-pead 0 ohms ns for AM in ys for DC-si V A as per AN 5 A DC max ims ver alloy 3 A as per AN 5 A DC max ims ver alloy 3 A as per AN 5 A DC max ims ver alloy 0 A as per AN 0 A as pe	k RS put hift i ISI C	125 V e load) 485 level nput 37.90 and reset inputs t or reset-
Make & carr Carry contir Break at L/F Operate tim Contact ma FAST FORM- Make & carr Minimum lo Operate tim Internal Lim Resistor: IRIG-B OUTI Amplitude: Isolation: LATCHING F Make & carr Carry contir Break at L/F Operate tim Control: Control moo Net Control: Control moo User output SOLID-STAT Operate & r Maximum v Current: Make & carr Operate & r Maximum v Current: Make & carr	ry for 0.2 s huous: R of 40 ms he: terial: -C RELAY y: ad impedue: hiting PUT had: RELAY ry for 0.2 s huous: R of 40 ms he: terial: de: TPUTS (IEC terial: de: TPUTS (IEC terial: control terial: de: TPUTS (IEC terial: control terial: control terial: contr	:: 30 0 8 7 4 8 7 4 8 7 4 8 7 7 8 8 7 4 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 9 7 7 7 7	A 5 A DC max 5 A DC max ims ver alloy A max. (res 6 ms 0, 2 V peak-pea 0 ohms ns for AM in µs for DC-si V A as per AN 5 A DC max ms ver alloy 0 oracte operate- data operate- 0 miniant 0 GSSE 00 µs 5 V DC	k RS put hift i ISI C	125 V e load) 485 level nput 37.90 and reset inputs t or reset-
Make & carr Carry contin Break at L/F Operate tim Contact ma FAST FORM- Make & carr Minimum lo Operate tim Internal Lim IRIG-B OUTT Amplitude: Isolation: LATCHING F Make & carr Carry contin Break at L/F Operate tim Contract ma Control: Control moor REMOTE OU Standard ou User output SoLID-STAT Operate & ar Control moor REMOTE OU Standard ou User output SoLID-STAT Operate & ar	ry for 0.2 s huous: R of 40 ms he: terial: -C RELAY y: ad impedue: hiting PUT had: RELAY ry for 0.2 s huous: R of 40 ms he: terial: de: TPUTS (IEC terial: de: TPUTS (IEC terial: control terial: de: TPUTS (IEC terial: control terial: control terial: contr	:: 30 0 8 7 4 8 7 4 8 7 4 8 7 7 8 8 7 4 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 9 7 7 7 7	A 5 A DC max 0 A DC max ims ver alloy A max. (res 1.6 ms 0, 2 V peak-pead 0 ohms ns for AM in ys for DC-si V A as per AN 5 A DC max ims 5 A DC max ims 5 A DC max ims 5 A DC max ims 5 A DC max ims 0 ohms 5 A DC max ims 10 ohms 5 A DC max ims 10 ohms 5 A DC max ims 10 ohms 5 A DC max ims 10 ohms 10 o	k RS put hift i ISI C	125 V e load) 485 level nput 37.90 and reset inputs t or reset-
Make & carr Carry contir Break at L/F Operate tim Contact ma FAST FORM- Make & carr Minimum lo Operate tim Internal Lim Resistor: IRIG-B OUTI Amplitude: Isolation: LATCHING F Make & carr Carry contir Break at L/F Operate tim Control: Control moo Standted ou User output SOLID-STAT Operate & r Maximum v Current: Make & carr Operate & r Maximum v Current: Make & carr	ry for 0.2 s nuous: a of 40 ms re: terial: -C RELAY ry: ad impedue: inting PUT bad: RELAY ry for 0.2 s nuous: a of 40 ms re: terial: de: TPUTS (IEC truty poin ; points: E OUTPUT elease tim oltage: ontinuous ry for 0.2 s pacity:	:: 30 :: 0.2 :: 0.2 :: 0.2 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2	A 5 A DC max 0 A DC max ims ver alloy A max. (res 1.6 ms 0, 2 V peak-pead 0 ohms ns for AM in ys for DC-si V A as per AN 5 A DC max ims 5 A DC max ims 5 A DC max ims 5 A DC max ims 5 A DC max ims 1.6 ms 5 A DC max ims 5 A DC max ims 1.6 ms 5 A DC max ims 1.6 ms 1.6	k RS put hift i SI C ate c in an A at 37.90	125 V e load) 485 level nput 37.90 and reset inputs t or reset-
Make & carr Carry contir Break at L/F Operate tim Contact ma FAST FORM- Make & carr Minimum lo Operate tim Internal Lim Resistor: IRIG-B OUTI Amplitude: Isolation: LATCHING F Make & carr Carry contir Break at L/F Operate tim Control: Control moo Standted ou User output SOLID-STAT Operate & r Maximum v Current: Make & carr Operate & r Maximum v Current: Make & carr	ry for 0.2 s huous: R of 40 ms he: terial: -C RELAY y: ad impedue: hiting PUT had: RELAY ry for 0.2 s huous: R of 40 ms he: terial: de: TPUTS (IEC terial: de: TPUTS (IEC terial: control terial: de: TPUTS (IEC terial: control terial: control terial: contr	:: 30 :: 0.2 :: 0.2 :: 0.2 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2	A 5 A DC max 0 A DC max ims ver alloy A max. (res 1.6 ms 0, 2 V peak-pea 0 ohms ns for AM in ps for DC-sl V A as per AN 5 A DC max ims ver alloy 0 ohms 5 A DC max ver alloy 0 ohms 5 A DC max ims ver alloy 0 ohms 5 A DC max ims ver alloy 0 ohms 5 A DC max ver alloy 0 ohms 5 A DC max ims ver alloy 0 ohms 5 V DC a t 45°C; 4 J per ANSI C3 0 A V V V V V V V V V V V V V	k RS put hift i SI C ate c in an A at 37.90	125 V e load) 485 level nput 37.90 and reset inputs t or reset-
Make & carr Carry contin Break at L/F Operate tim Contact ma FAST FORM- Make & carr Make & carr IRIG-B OUTF Amplitude: Isolation: LATCHING F Make & carr Carry contin Break at L/F Operate tim Control: Control moot REMOTE OU Standard ou User output SOLID-STAT Operate & ar Control: Control moot	ry for 0.2 s nuous: R of 40 ms he: terial: -C RELAY 'y: ad impedue: niting PUT had: PUT had: RELAY ry for 0.2 s nuous: R of 40 ms he: terial: de: ITPUTS (IE terial: de: ITPUTS (IE elease tim oltage: ontinuous ry for 0.2 s pacity: IEC 647-5/	:: 30 0 8 / A / C / C / C / C / C / C / C / C / C	A 5 A DC max 0 A DC max ims ver alloy A max. (res 1.6 ms 0, 2 V peak-pea 0 ohms ns for AM in µs for DC-sl V A as per AN 5 A DC max ver alloy A as per AN 5 A DC max ver alloy 0 as per AN 5 V DC 1.0 at 45°C; 4 J per ANSI C3 0 A UTILITY APPLICATIC AUTORECON S onel	k RS put hift i SI C ate c in an A at 37.90	125 V e load) 485 level nput 37.90 and reset inputs t or reset- 65°C
Make & carr Carry contir Break at L/F Operate tim Contact ma FAST FORM- Make & carr Minimum lo Operate tim Internal Lim Resistor: IRIG-B OUTI Amplitude: Isolation: LATCHING F Make & carr Carry contir Break at L/F Operate tim Control: Control moo Standted ou User output SOLID-STAT Operate & r Maximum v Current: Make & carr Operate & r Maximum v Current: Make & carr	ry for 0.2 s nuous: R of 40 ms he: terial: -C RELAY y: ad impedue: niting PUT had: RELAY ry for 0.2 s nuous: R of 40 ms he: terial: de: TPUTS (IE utput poin points: E OUTPUT elease tim output poin points: y for 0.2 s pacity: IEC 647-5/ 1 s-00.9		A 5 A DC max 5 A DC max ims ver alloy A max. (res 1.6 ms 0, 2 V peak-pea 0 ohms ns for AM in ys for DC-sl V A as per AN 5 A DC max ims 5 A DC max ver alloy orarate oper er ate-domi minant 0 GSSE) 0 µs 5 V DC 4 at 45°C; 4 <i>i</i> per ANSI C3 0 A V V A DC max ims 1.6 ms 1.6 m	k RS put hift i SI C ate c in an A at 37.90	125 V e load) 485 level nput 37.90 and reset inputs t or reset- 65°C
Make & carr Carry contin Break at L/F Operate tim Contact ma FAST FORM- Make & carr Minimum lo Operate tim Internal Lim Resistor: IRIG-B OUTF Amplitude: Isolation: LATCHING F Make & carr Carry contin Break at L/F Operate tim Control: Control mod Standard ot User output SolID-STAT Operate & r Maximum c current: Make & carr Carry contin Break at L/F Operate tim Control: Control mod	ry for 0.2 s nuous: R of 40 ms he: terial: -C RELAY 'y: ad impedue: niting PUT had: PUT had: RELAY ry for 0.2 s nuous: R of 40 ms he: terial: de: ITPUTS (IE terial: de: ITPUTS (IE elease tim oltage: ontinuous ry for 0.2 s pacity: IEC 647-5/	:: 30 0 : 0.2 : 0.1 10	A 5 A DC max 0 A DC max ims ver alloy A max. (res 1.6 ms 0, 2 V peak-pea 0 ohms ns for AM in µs for DC-sl V A as per AN 5 A DC max ver alloy A as per AN 5 A DC max ver alloy 0 as per AN 5 V DC 1.0 at 45°C; 4 J per ANSI C3 0 A UTILITY APPLICATIC AUTORECON S onel	k RS put hift i SI C ate c in an A at 37.90	125 V e load) 485 level nput 37.90 and reset inputs t or reset- 65°C

	0.5 s-On, 0.5 s-Of	minute	50 5 011
Break	3.2 A L/R = 10 ms		
capability (0 to 250 VDC)	1.6 A L/R = 20 ms	10 A L/R = 40 ms	10 A L/R = 40 ms
	0.8 A L/R = 40 ms		

COMMUN	ICATIONS					
RS232						
Front por	t:		19.	2 kbps, Mo	dbus® RTU	DNP 3.0
RS485						
1 or 2 rea Typical di			3.0	to 115 kbp isolated to)0 m		
Isolation:			2 k	V		
ETHERNE	T PORT					
10Base-F:			hal) nm, mı f-duplex/fu h ST conne	Il-duplex f	
Redundant 10Base-F:		full	820 nm, multi-mode, half-duplex/ full-duplex fiber optic with ST connector			
10Base-T			RJ45 connector			
Power bu	daet:		10 dB			
Max optic	al input po	ower:				
Max optic	al output					
power:						
	sensitivity:					
Typical di	stance:					
	ck (redundo ization erro		<10) ms (typico	l)	
PROTOCO	LS					
	RS232	RS48	35	10BaseF	10BaseT	100BaseT
IEC 61850				•	٠	•
DNP 3.0	•	•		•	•	•
Modbus	•	•		•		•
IEC104						

1	INTER-RELAY COMMUNICATIONS			
	SHIELDED TWISTED-PAIR INTERFACE OPTIONS			
	INTERFACE TYPE	TYPICAL DISTANCE		
	RS422	1200m		
	G.703	100m		

 \ast NOTE: RS422 distance is based on transmitter power and does not take into consideration the clock source provided by the user.

LINK POWER BUDGET

EGD

EMITTER, FIBER TYPE	TRANSMIT POWER	RECEIVED SENSITIVITY	POWER BUDGET
820nm LED Multimode	-20dBm	-30dBm	10dB
1300 nm LED Multimode	-21dBm	-30dBm	9dB
1300 nm ELED Multimode	-21dBm	-30dBm	9dB
1300 nm Laser Singlemode	-1dBm	-30dBm	29dB
1550 nm Laser Singlemode	+5dBm	-30dBm	35dB

* NOTE: These power budgets are calculated from the manufacturers' worst-case transmitter power and worst-case receiver sensitivity.

MAXIMUM OPTICAL INPUT POWER

EMITTED, FIBER TYPE	MAX. OPTICAL INPUT POWER
820 nm LED, Multimode	-7.6 dBm
1300 nm LED, Multimode	-11 dBm
1300 nm ELED, Singlemode	-14 dBm
1300 nm Laser, Singlemode	-14 dBm
1500 nm Laser, Singlemode	-14 dBm

TYPICAL LINK DISTANCE

EMITTED TYPE	FIBER TYPE	CONNECTOR TYPE	TYPICAL DISTANCE
820 nm LED	Multimode	-7.6 dBm	1.65 km
1300 nm LED	Multimode	-11 dBm	3.8 km
1300 nm ELED	Singlemode	-14 dBm	11.4 km
1300 nm Laser	Singlemode	-14 dBm	64 km
1500 nm Laser	Singlemode	-14 dBm	105 km

INTER-RELAY COMMU	NICATIONS	
assumptions for syste	nces listed are based on the following m loss. Actual losses will vary from one r, the distance covered by your system	
	TOTAL OF BOTH ENDS)	
ST connector	2dB	
FIBER LOSSES 820 nm multimode 1300 nm singlemode 1300 nm singlemode 1550 nm singlemode Splice losses:	3 dB/km 1 dB/km 0.35 dB/km 0.25 dB/km One splice every 2 km, at 0.05 dB loss per splice	
SYSTEM MARGIN 3 dB additional loss a all other losses.	dded to calculations to compensate for	
	e in transmitting and receiving (channel elays using GPS satellite clock: 10 ms	
POWER SUPPLY		
POWER SUPPLY		
LOW RANGE	26 40 40 40 40 4	
LOW RANGE Nominal DC voltage:	24 to 48 V at 3 A	
LOW RANGE	20 / 60 V	
LOW RANGE Nominal DC voltage: Min/max DC voltage: * NOTE: HIGH RANGE	20 / 60 V Low range is DC only.	
LOW RANGE Nominal DC voltage: Min/max DC voltage: * NOTE: HIGH RANGE Nominal DC voltage:	20 / 60 V Low range is DC only. 125 to 250 V at 0.7 A	
LOW RANGE Nominal DC voltage: Min/max DC voltage: * NOTE: HIGH RANGE Nominal DC voltage: Min/max DC voltage: Nominal AC voltage: Min/max AC voltage:	20 / 60 V Low range is DC only.	
LOW RANGE Nominal DC voltage: Min/max DC voltage: * NOTE: HIGH RANGE Nominal DC voltage: Min/max DC voltage: Min/max AC voltage: Min/max AC voltage: ALL RANGES	20 / 60 V Low range is DC only. 125 to 250 V at 0.7 A 88 / 300 V 100 to 240 V at 50/60 Hz, 0.7 A 88 / 265 V at 25 to 100 Hz	
LOW RANGE Nominal DC voltage: Min/max DC voltage: * NOTE: HIGH RANGE Nominal DC voltage: Min/max AC voltage: Min/max AC voltage: Min/max AC voltage: ALL RANGES Volt withstand: Voltage loss hold-up: Power consumption:	20 / 60 V Low range is DC only. 125 to 250 V at 0.7 A 88 / 300 V 100 to 240 V at 50/60 Hz, 0.7 A	
LOW RANGE Nominal DC voltage: Min/max DC voltage: * NOTE: HIGH RANGE Nominal DC voltage: Min/max DC voltage: Nominal AC voltage: Min/max AC voltage: ALL RANGES Volt withstand: Voltage loss hold-up: Power consumption: INTERNAL FUSE	20 / 60 V Low range is DC only. 125 to 250 V at 0.7 A 88 / 300 V 100 to 240 V at 50/60 Hz, 0.7 A 88 / 265 V at 25 to 100 Hz 2 × Highest Nominal Voltage for 10 ms 50 ms duration at nominal	
LOW RANGE Nominal DC voltage: Min/max DC voltage: * NOTE: HIGH RANGE Nominal DC voltage: Min/max AC voltage: Min/max AC voltage: Min/max AC voltage: ALL RANGES Volt withstand: Voltage loss hold-up: Power consumption:	20 / 60 V Low range is DC only. 125 to 250 V at 0.7 A 88 / 300 V 100 to 240 V at 50/60 Hz, 0.7 A 88 / 265 V at 25 to 100 Hz 2 × Highest Nominal Voltage for 10 ms 50 ms duration at nominal	

High range power 4 A supply: INTERRUPTING CAPACITY

INTER RELAY COMMUNICATION

100 000 A RMS symmetrical 10 000 A 200 ms Hold up time:

TYPE TESTS

AC: DC:

Electrical fast transient:	ANSI/IEEE C37.90.1
	IEC 61000-4-4
	IEC 60255-22-4
Oscillatory transient:	ANSI/IEEE C37.90.1
oscillatory transient.	IEC 61000-4-12
Insulation resistance:	IEC 60255-5
	IEC 60255-5
Dielectric strength:	
	ANSI/IEEE C37.90
Electrostatic discharge:	EN 61000-4-2
Surge immunity:	EN 61000-4-5
RFI susceptibility:	ANSI/IEEE C37.90.2
	IEC 61000-4-3
	IEC 60255-22-3
	Ontario Hydro C-5047-77
Conducted RFI:	IFC 61000-4-6
Voltage dips/interruptions	s/variations.
tonago aipo, interi aptiona	IFC 61000-4-11
	IEC 60255-11
Power frequency magneti	
Fower frequency mugnet	IEC 61000-4-8
Vibration test	IEC 60255-21-1
	IEC 00255-21-1
(sinusoidal):	
Shock and bump:	IEC 60255-21-2
* NOTE:	Type test report available upon
	request.

PRODUCTION TESTS THERMAL Products go through an environmental test based upon an

Cold:	accepted quality level (AQL) sampling process		
OPERATING TEMPERATURES Cold: IEC 60028-2-1, 16 h at -40°C Dry Heat: IEC 60028-2-2, 16 h at +85°C OTHER IEC 60068-2-30, 95%, Variant 1,6days. Altitude: Up to 2000 m Installation Category: II APPROVALS UL Listed for the USA and Canada		c) sumpling process	
Cold: IEC 60028-2-1, 16 h at -40°C Dry Heat: IEC 60028-2-2, 16 h at +85°C OTHER IEC 60068-2-30, 95%, Variant 1,6days. Altitude: Up to 2000 m Installation Category: II APPROVALS UL Listed for the USA and Canada			
Dry Heat: IEC 60028-2-2, 16 h at +85°C OTHER IEC 60068-2-30, 95%, Variant 1,6days. Altitude: Up to 2000 m Installation Category: II APPROVALS UL Listed for the USA and Canada	OPERATING TEMPERATU		
OTHER Humidity(noncondensing): IEC 60068-2-30, 95%, Variant 1,6days. Altitude: Up to 2000 m Installation Category: II APPROVALS UL Listed for the USA and Canada	Cold:	IEC 60028-2-1, 16 h at -40°C	
Humidity(noncondensing): IEC 60068-2-30, 95%, Variant 1,6days. Up to 2000 m Installation Category: II APPROVALS UL Listed for the USA and Canada III III	Dry Heat:	IEC 60028-2-2, 16 h at +85°C	
IEC 60068-2-30, 95%, Variant 1,6days. Up to 2000 m Installation Category: II APPROVALS UL Listed for the USA and Canada	OTHER		
1,6days. Altitude: Up to 2000 m Installation Category: II APPROVALS UL Listed for the USA and Canada	Humidity(noncondensing	g):	
Installation Category: II APPROVALS UL Listed for the USA and Canada			
Installation Category: II APPROVALS UL Listed for the USA and Canada	Altitude:	Up to 2000 m	
UL Listed for the USA and Canada		<u> </u>	
	APPROVALS		
	UL Listed for the USA and Canada		

LVD 73/23/EEC: IEC 1010-1 CE EMC 81/336/EEC: EN 50081-2, EN 50082-2

IEC is a registered trademark of Commission Electrotechnique Internationale. IEEE is a registered trademark of the Institute of Electrical Electronics Engineers, Inc. Modbus is a registered trademark of Schneider Automation. NERC is a registered trademark of North American Electric Reliability Council. NIST is a registered trademark of the National Institute of Standards and Technology

GE, the GE monogram, Multilin, FlexLogic, EnerVista and CyberSentry are trademarks of General Electric Company.

GE reserves the right to make changes to specifications of products described at any time without notice and without obligation to notify any person of such changes.

Copyright 2018, General Electric Company. All Rights Reserved.